A<sc>bstract</sc> We show that the general charged, rotating black hole in five-dimensional Einstein-Maxwell theory has a singular extremal limit. Only the known analytic solutions with exactly zero charge or zero angular momenta have smooth extremal horizons. We also consider general black holes in five-dimensional Einstein-Maxwell-Chern-Simons theory, and show that they also have singular extremal limits except for one special value of the coefficient of the Chern-Simons term (the one fixed by supergravity). Combining this with earlier results showing that extremal black holes have singular horizons in four-dimensional general relativity with small higher derivative corrections, and in anti-de Sitter space with perturbed boundary conditions, one sees that smooth extremal horizons are indeed the exception and not the rule.
more »
« less
Electro-magnetic energy extraction from rotating black holes in AdS
A bstract Force-Free Electrodynamics for black holes in Anti de Sitter is considered. We present new, energy extracting solutions of Force-Free Electrodynamics in Anti de Sitter-Near Horizon Extremal Kerr and Super-Entropic Near Horizon Extremal Kerr geometries. The relevant equations of motion are derived from an action for force-free plasma surrounding spinning black holes with generic asymptotics. We consider the energy flux of electrodynamic fields in rotating frames to argue that the correct measure for energy extraction is the energy flux measured by a rotating observer in the near horizon region. We illustrate this procedure by application to near horizon solutions in Kerr, AdS-Kerr and BTZ.
more »
« less
- Award ID(s):
- 1914860
- PAR ID:
- 10268163
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2020
- Issue:
- 12
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract Perturbations of massless fields in the Kerr-Newman black hole background enjoy a (“Love”) SL(2 , ℝ) symmetry in the suitably defined near zone approximation. We present a detailed study of this symmetry and show how the intricate behavior of black hole responses in four and higher dimensions can be understood from the SL(2 , ℝ) representation theory. In particular, static perturbations of four-dimensional black holes belong to highest weight SL(2 , ℝ) representations. It is this highest weight properety that forces the static Love numbers to vanish. We find that the Love symmetry is tightly connected to the enhanced isometries of extremal black holes. This relation is simplest for extremal charged spherically symmetric (Reissner-Nordström) solutions, where the Love symmetry exactly reduces to the isometry of the near horizon AdS 2 throat. For rotating (Kerr-Newman) black holes one is lead to consider an infinite-dimensional SL(2 , ℝ) ⋉ $$ \hat{\textrm{U}}{(1)}_{\mathcal{V}} $$ U ̂ 1 V extension of the Love symmetry. It contains three physically distinct subalgebras: the Love algebra, the Starobinsky near zone algebra, and the near horizon algebra that becomes the Bardeen-Horowitz isometry in the extremal limit. We also discuss other aspects of the Love symmetry, such as the geometric meaning of its generators for spin weighted fields, connection to the no-hair theorems, non-renormalization of Love numbers, its relation to (non-extremal) Kerr/CFT correspondence and prospects of its existence in modified theories of gravity.more » « less
-
A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory.more » « less
-
Abstract A new solution of four-dimensional vacuum General Relativity is presented. It describes the near horizon region of the extreme (maximally spinning) binary black hole system with two identical extreme Kerr black holes held in equilibrium by a massless strut. This is the first example of a non-supersymmetric, near horizon extreme binary black hole geometry of two uncharged black holes. The black holes are co-rotating, their relative distance is fixed, and the solution is uniquely specified by the mass. Asymptotically, the geometry corresponds to the near horizon extreme Kerr (NHEK) black hole. The binary extreme system has finite entropy.more » « less
-
A bstract We construct a family of non-supersymmetric extremal black holes and their horizonless microstate geometries in four dimensions. The black holes can have finite angular momentum and an arbitrary charge-to-mass ratio, unlike their supersymmetric cousins. These features make them and their microstate geometries astrophysically relevant. Thus, they provide interesting prototypes to study deviations from Kerr solutions caused by new horizon-scale physics. In this paper, we compute the gravitational multipole structure of these solutions and compare them to Kerr black holes. The multipoles of the black hole differ significantly from Kerr as they depend non-trivially on the charge-to-mass ratio. The horizonless microstate geometries (that are comparable in size to a black hole) have a similar multipole structure as their corresponding black hole, with deviations to the black hole multipole values set by the scale of their microstructure.more » « less