skip to main content


Title: Automatic detection of novelty galaxies in digital sky survey data
Galaxy images of the order of multi-PB are collected as part of modern digital sky surveys using robotic telescopes. While there is a plethora of imaging data available, the majority of the images that are captured resemble galaxies that are “regular”, i.e., galaxy types that are already known and probed. However, “novelty" galaxy types, i.e., little-known galaxy types are encountered on occasion. The astronomy community shows paramount interest in the novelty galaxy types since they contain the potential for scientific discovery. However, since these galaxies are rare, the identification of such novelty galaxies is not trivial and requires automation techniques. Since these novelty galaxies are by definition, not known, supervised machine learning models cannot be trained to detect them. In this paper, an unsupervised machine learning method for automatic detection of novelty galaxies in large databases is proposed. The method uses a large set of image features weighted by their entropy. To handle the impact of self-similar novelty galaxies, the most similar galaxies are ranked-ordered. In addition, Bag of Visual Words (BOVW) is assimilated to the problem of detecting novelty galaxies. Each image in the dataset is represented as a set of features made up of key-points and descriptors. A histogram of the features is constructed and is leveraged to identify the neighbors of each of the images. Experimental results using data from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) show that the performance of the methods in detecting novelty galaxies is superior to other shallow learning methods such as one-class SVM, Local Outlier Factor, and K-Means, and also newer deep learning-based methods such as auto-encoders. The dataset used to evaluate the method is publicly available and can be used as a benchmark to test future algorithms for automatic detection of peculiar galaxies.  more » « less
Award ID(s):
1903823
NSF-PAR ID:
10268488
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of computer application
Volume:
28
Issue:
1
ISSN:
2250-1797
Page Range / eLocation ID:
25-33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)

    Modern digital sky surveys utilize robotic telescopes that collect extremely large multi- PB astronomical databases. While these databases can contain billions of galaxies, most of the galaxies are “regular” galaxies of known galaxy types. However, a small portion of the galaxies is rare “peculiar” galaxies that are not yet known. These unknown galaxies are of paramount scientific interest, but due to the enormous size of astronomical databases they are practically impossible to find without automation. Since these novelty galaxies are, by definition, not known, machine learning models cannot be trained to detect them. In this paper, an unsupervised machine learning method for automatic detection of novelty galaxies in large databases is proposed. The method is based on a large and comprehensive set of numerical image content descriptors weighted by their entropy, and the farthest neighbors are ranked-ordered to handle self-similar peculiar galaxies that are expected in the very large datasets. Experimental results using data from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) show that the ability of the method to detect novelty galaxies outperforms other shallow learning methods such as one-class SVM, Local Outlier Factor, and K-Means, and also newer deep learning-based methods such as auto-encoders. The dataset used to evaluate the method is publicly available and can be used as a benchmark to test future algorithms for automatic detection of peculiar galaxies.

     
    more » « less
  2. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  3. ABSTRACT A full ring is a form of galaxy morphology that is not associated with a specific stage on the Hubble sequence. Digital sky surveys can collect many millions of galaxy images, and therefore even rare forms of galaxies are expected to be present in relatively large numbers in image data bases created by digital sky surveys. Sloan Digital Sky Survey (SDSS) data release (DR) 14 contains ∼2.6 × 106 objects with spectra identified as galaxies. The method described in this paper applied automatic detection to identify a set of 443 ring galaxy candidates, 104 of them were already included in the Buta  + 17 catalogue of ring galaxies in SDSS, but the majority of the galaxies are not included in previous catalogues. Machine analysis cannot yet match the superior pattern recognition abilities of the human brain, and even a small false positive rate makes automatic analysis impractical when scanning through millions of galaxies. Reducing the false positive rate also increases the true negative rate, and therefore the catalogue of ring galaxy candidates is not exhaustive. However, due to its clear advantage in speed, it can provide a large collection of galaxies that can be used for follow-up observations of objects with ring morphology. 
    more » « less
  4. Abstract

    The implementation of intelligent software to identify and classify objects and individuals in visual fields is a technology of growing importance to operatives in many fields, including wildlife conservation and management. To non-experts, the methods can be abstruse and the results mystifying. Here, in the context of applying cutting edge methods to classify wildlife species from camera-trap data, we shed light on the methods themselves and types of features these methods extract to make efficient identifications and reliable classifications. The current state of the art is to employ convolutional neural networks (CNN) encoded within deep-learning algorithms. We outline these methods and present results obtained in training a CNN to classify 20 African wildlife species with an overall accuracy of 87.5% from a dataset containing 111,467 images. We demonstrate the application of a gradient-weighted class-activation-mapping (Grad-CAM) procedure to extract the most salient pixels in the final convolution layer. We show that these pixels highlight features in particular images that in some cases are similar to those used to train humans to identify these species. Further, we used mutual information methods to identify the neurons in the final convolution layer that consistently respond most strongly across a set of images of one particular species. We then interpret the features in the image where the strongest responses occur, and present dataset biases that were revealed by these extracted features. We also used hierarchical clustering of feature vectors (i.e., the state of the final fully-connected layer in the CNN) associated with each image to produce a visual similarity dendrogram of identified species. Finally, we evaluated the relative unfamiliarity of images that were not part of the training set when these images were one of the 20 species “known” to our CNN in contrast to images of the species that were “unknown” to our CNN.

     
    more » « less
  5. Abstract

    Among many structural assessment methods, the change of modal characteristics is considered a well‐accepted damage detection method. However, the presence of environmental or operational variations may pollute the baseline and prevent a dependable assessment of the change. In recent years, the use of machine learning algorithms gained interest within structural health community, especially due to their ability and success in the elimination of ambient uncertainty. This paper proposes an end‐to‐end architecture to detect damage reliably by employing machine learning algorithms. The proposed approach streamlines (a) collection of structural response data, (b) modal analysis using system identification, (c) learning model, and (d) novelty detection. The proposed system aims to extract latent features of accessible modal parameters such as natural frequencies and mode shapes measured at undamaged target structure under temperature uncertainty and to reconstruct a new representation of these features that is similar to the original using well‐established machine learning methods for damage detection. The deviation between measured and reconstructed parameters, also known as novelty index, is the essential information for detecting critical changes in the system. The approach is evaluated by analyzing the structural response data obtained from finite element models and experimental structures. For the machine learning component of the approach, both principal component analysis (PCA) and autoencoder (AE) are examined. While mode shapes are known to be a well‐researched damage indicator in the literature, to our best knowledge, this research is the first time that unsupervised machine learning is applied using PCA and AE to utilize mode shapes in addition to natural frequencies for effective damage detection. The detection performance of this pipeline is compared to a similar approach where its learning model does not utilize mode shapes. The results demonstrate that the effectiveness of the damage detection under temperature variability improves significantly when mode shapes are used in the training of learning algorithm. Especially for small damages, the proposed algorithm performs better in discriminating system changes.

     
    more » « less