skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatic detection of novelty galaxies in digital sky survey data
Galaxy images of the order of multi-PB are collected as part of modern digital sky surveys using robotic telescopes. While there is a plethora of imaging data available, the majority of the images that are captured resemble galaxies that are “regular”, i.e., galaxy types that are already known and probed. However, “novelty" galaxy types, i.e., little-known galaxy types are encountered on occasion. The astronomy community shows paramount interest in the novelty galaxy types since they contain the potential for scientific discovery. However, since these galaxies are rare, the identification of such novelty galaxies is not trivial and requires automation techniques. Since these novelty galaxies are by definition, not known, supervised machine learning models cannot be trained to detect them. In this paper, an unsupervised machine learning method for automatic detection of novelty galaxies in large databases is proposed. The method uses a large set of image features weighted by their entropy. To handle the impact of self-similar novelty galaxies, the most similar galaxies are ranked-ordered. In addition, Bag of Visual Words (BOVW) is assimilated to the problem of detecting novelty galaxies. Each image in the dataset is represented as a set of features made up of key-points and descriptors. A histogram of the features is constructed and is leveraged to identify the neighbors of each of the images. Experimental results using data from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) show that the performance of the methods in detecting novelty galaxies is superior to other shallow learning methods such as one-class SVM, Local Outlier Factor, and K-Means, and also newer deep learning-based methods such as auto-encoders. The dataset used to evaluate the method is publicly available and can be used as a benchmark to test future algorithms for automatic detection of peculiar galaxies.  more » « less
Award ID(s):
1903823
PAR ID:
10268488
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of computer application
Volume:
28
Issue:
1
ISSN:
2250-1797
Page Range / eLocation ID:
25-33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Modern digital sky surveys utilize robotic telescopes that collect extremely large multi- PB astronomical databases. While these databases can contain billions of galaxies, most of the galaxies are “regular” galaxies of known galaxy types. However, a small portion of the galaxies is rare “peculiar” galaxies that are not yet known. These unknown galaxies are of paramount scientific interest, but due to the enormous size of astronomical databases they are practically impossible to find without automation. Since these novelty galaxies are, by definition, not known, machine learning models cannot be trained to detect them. In this paper, an unsupervised machine learning method for automatic detection of novelty galaxies in large databases is proposed. The method is based on a large and comprehensive set of numerical image content descriptors weighted by their entropy, and the farthest neighbors are ranked-ordered to handle self-similar peculiar galaxies that are expected in the very large datasets. Experimental results using data from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) show that the ability of the method to detect novelty galaxies outperforms other shallow learning methods such as one-class SVM, Local Outlier Factor, and K-Means, and also newer deep learning-based methods such as auto-encoders. The dataset used to evaluate the method is publicly available and can be used as a benchmark to test future algorithms for automatic detection of peculiar galaxies. 
    more » « less
  2. Spiral galaxies can spin clockwise or counterclockwise, and the spin direction of a spiral galaxy is a clear visual characteristic. Since in a sufficiently large universe the Universe is expected to be symmetric, the spin direction of a galaxy is merely the perception of the observer, and therefore, galaxies that spin clockwise are expected to have the same characteristics of galaxies spinning counterclockwise. Here, machine learning is applied to study the possible morphological differences between galaxies that spin in opposite directions. The dataset used in this study is a dataset of 77,840 spiral galaxies classified by their spin direction, as well as a smaller dataset of galaxies classified manually. A machine learning algorithm was applied to classify between images of clockwise galaxies and counterclockwise galaxies. The results show that the classifier was able to predict the spin direction of the galaxy by its image in accuracy higher than mere chance, even when the images in one of the classes were mirrored to create a dataset with consistent spin directions. That suggests that galaxies that seem to spin clockwise to an Earth-based observer are not necessarily fully symmetric to galaxies that spin counterclockwise; while further research is required, these results are aligned with previous observations of differences between galaxies based on their spin directions. 
    more » « less
  3. null (Ed.)
    The novelty detection models learn a decision boundary around multiple categories of a given dataset. This helps such models in detecting any novel classes encountered during testing. However, in many cases, the test data distribution can be different from that of the training data. For such cases, the novelty detection models risk detecting a known class as novel due to the dataset distribution shift. This scenario is often ignored while working with novelty detection. To this end, we consider the problem of multiple class novelty detection under dataset distribution shift to improve the novelty detection performance. Firstly, we discuss the problem setting in detail and show how it affects the performance of current novelty detection methods. Secondly, we show that one could improve those novelty detection methods with a simple integration of domain adversarial loss. Finally, we propose a method which brings together the techniques from novelty detection and domain adaptation to improve generalization of multiple class novelty detection on different domains. We evaluate the proposed method on digits and object recognition datasets and show that it provides improvements over the baseline methods. 
    more » « less
  4. ABSTRACT A full ring is a form of galaxy morphology that is not associated with a specific stage on the Hubble sequence. Digital sky surveys can collect many millions of galaxy images, and therefore even rare forms of galaxies are expected to be present in relatively large numbers in image data bases created by digital sky surveys. Sloan Digital Sky Survey (SDSS) data release (DR) 14 contains ∼2.6 × 106 objects with spectra identified as galaxies. The method described in this paper applied automatic detection to identify a set of 443 ring galaxy candidates, 104 of them were already included in the Buta  + 17 catalogue of ring galaxies in SDSS, but the majority of the galaxies are not included in previous catalogues. Machine analysis cannot yet match the superior pattern recognition abilities of the human brain, and even a small false positive rate makes automatic analysis impractical when scanning through millions of galaxies. Reducing the false positive rate also increases the true negative rate, and therefore the catalogue of ring galaxy candidates is not exhaustive. However, due to its clear advantage in speed, it can provide a large collection of galaxies that can be used for follow-up observations of objects with ring morphology. 
    more » « less
  5. Cracks of civil infrastructures, including bridges, dams, roads, and skyscrapers, potentially reduce local stiffness and cause material discontinuities, so as to lose their designed functions and threaten public safety. This inevitable process signifier urgent maintenance issues. Early detection can take preventive measures to prevent damage and possible failure. With the increasing size of image data, machine/deep learning based method have become an important branch in detecting cracks from images. This study is to build an automatic crack detector using the state-of-the-art technique referred to as Mask Regional Convolution Neural Network (R-CNN), which is kind of deep learning. Mask R-CNN technique is a recently proposed algorithm not only for object detection and object localization but also for object instance segmentation of natural images. It is found that the built crack detector is able to perform highly effective and efficient automatic segmentation of a wide range of images of cracks. In addition, this proposed automatic detector could work on videos as well; indicating that this detector based on Mask R-CNN provides a robust and feasible ability on detecting cracks exist and their shapes in real time on-site. 
    more » « less