skip to main content


Title: Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor
Abstract Cytosine base editors (CBEs) are promising tools for precise genome editing in plants. It is important to investigate potential off-target effects of an efficient CBE at the genome and transcriptome levels in a major crop. Based on comparison of five cytidine deaminases and two different promoters for expressing sgRNAs, we tested a highly efficient A3A/Y130F-BE3 system for efficient C-to-T base editing in tomato (Solanum lycopersicum). We then conducted whole-genome sequencing (WGS) of four base-edited tomato plants, three GFP-expressing control plants, and two wild-type (WT) plants. The sequencing depths ranged from 25X to 49X with read mapping rates above 97%. No sgRNA-dependent off-target mutations were detected. Our data show an average of ∼1000 single nucleotide variations (SNVs) and ∼100 insertions and deletions (indels) per GFP control plant. Base-edited plants had on average elevated levels of SNVs (∼1250) and indels (∼300) per plant. On average, about 200 more C-to-T (G-to-A) mutations were found in a base-edited plant than a GFP control plant, suggesting some level of sgRNA-independent off-target effects, though the difference is not statistically significant. We also conducted RNA sequencing (RNA-seq) of the same four base-edited plants and three GFP control plants. An average of ∼200 RNA SNVs was discovered per plant for either base-edited or GFP control plants. Furthermore, no specific enrichment of C-to-U mutations can be found in the base-edited plants. Hence, we cannot find any evidence for bona fide off-target mutations by A3A/Y130F-BE3 at the transcriptome level.  more » « less
Award ID(s):
1758745 2029889
NSF-PAR ID:
10269522
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Plant Physiology
ISSN:
1532-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Adenine base editors (ABEs) are valuable, precise genome editing tools in plants. In recent years, the highly promising ADENINE BASE EDITOR8e (ABE8e) was reported for efficient A-to-G editing. However, compared to monocots, comprehensive off-target analyses for ABE8e are lacking in dicots. To determine the occurrence of off-target effects in tomato (Solanum lycopersicum), we assessed ABE8e and a high-fidelity version, ABE8e-HF, at 2 independent target sites in protoplasts, as well as stable T0 lines. Since ABE8e demonstrated higher on-target efficiency than ABE8e-HF in tomato protoplasts, we focused on ABE8e for off-target analyses in T0 lines. We conducted whole-genome sequencing (WGS) of wild-type (WT) tomato plants, green fluorescent protein (GFP)–expressing T0 lines, ABE8e-no-gRNA control T0 lines, and edited T0 lines. No guide RNA (gRNA)–dependent off-target edits were detected. Our data showed an average of approximately 1,200 to 1,500 single-nucleotide variations (SNVs) in either GFP control plants or base-edited plants. Also, no specific enrichment of A-to-G mutations were found in base-edited plants. We also conducted RNA sequencing (RNA-seq) of the same 6 base-edited and 3 GFP control T0 plants. On average, approximately 150 RNA–level SNVs were discovered per plant for either base-edited or GFP controls. Furthermore, we did not find enrichment of a TA motif on mutated adenine in the genomes and transcriptomes in base-edited tomato plants, as opposed to the recent discovery in rice (Oryza sativa). Hence, we could not find evidence for genome- and transcriptome-wide off-target effects by ABE8e in tomato.

     
    more » « less
  2. Summary

    Cytosine base editors (CBEs) are great additions to the expanding genome editing toolbox. To improve C‐to‐T base editing in plants, we first compared seven cytidine deaminases in the BE3‐like configuration in rice. We found A3A/Y130F‐CBE_V01 resulted in the highest C‐to‐T base editing efficiency in both rice andArabidopsis. Furthermore, we demonstrated this A3A/Y130F cytidine deaminase could be used to improve iSpyMacCas9‐mediated C‐to‐T base editing at A‐rich PAMs. To showcase its applications, we first applied A3A/Y130F‐CBE_V01 for multiplexed editing to generate microRNA‐resistant mRNA transcripts as well as pre‐mature stop codons in multiple seed trait genes. In addition, we harnessed A3A/Y130F‐CBE_V01 for efficient artificial evolution of novelALSandEPSPSalleles which conferred herbicide resistance in rice. To further improve C‐to‐T base editing, multiple CBE_V02, CBE_V03 and CBE_V04 systems were developed and tested in rice protoplasts. The CBE_V04 systems were found to have improved editing activity and purity with focal recruitment of more uracil DNA glycosylase inhibitors (UGIs) by the engineered single guide RNA 2.0 scaffold. Finally, we used whole‐genome sequencing (WGS) to compare six CBE_V01 systems and four CBE_V04 systems for genome‐wide off‐target effects in rice. Different levels of cytidine deaminase‐dependent and sgRNA‐independent off‐target effects were indeed revealed by WGS among edited lines by these CBE systems. We also investigated genome‐wide sgRNA‐dependent off‐target effects by different CBEs in rice. This comprehensive study compared 21 different CBE systems, and benchmarked PmCDA1‐CBE_V04 and A3A/Y130F‐CBE_V04 as next‐generation plant CBEs with high editing efficiency, purity, and specificity.

     
    more » « less
  3. Abstract

    Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBERecApis efficient in creating base edits in strains ofXanthomonas,Pseudomonas,ErwiniaandAgrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate inPseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates ofXanthomonas oryzaepv.oryzaerevealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBERecAp-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.

     
    more » « less
  4. Abstract

    As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P. alba INRA 717-1B4). Unexpected duplications of MYB186 and MYB138 resulted in eight alleles for the three targeted genes in the hybrid poplar. Deep sequencing and polymerase chain reaction analyses confirmed editing across all eight targets in nearly all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-target activity detected at four potential sites. This highlights the effectiveness of a single gRNA targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole-leaf analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously undescribed role for the nonglandular trichomes of poplar.

     
    more » « less
  5. Cytosine base editors (CBEs) enable efficient cytidine-to-thymidine (C-to-T) substitutions at targeted loci without double-stranded breaks. However, current CBEs edit all Cs within their activity windows, generating undesired bystander mutations. In the most challenging circumstance, when a bystander C is adjacent to the targeted C , existing base editors fail to discriminate them and edit both Cs. To improve the precision of CBE, we identified and engineered the human APOBEC3G (A3G) deaminase; when fused to the Cas9 nickase, the resulting A3G-BEs exhibit selective editing of the second C in the 5′-C C -3′ motif in human cells. Our A3G-BEs could install a single disease-associated C-to-T substitution with high precision. The percentage of perfectly modified alleles is more than 6000-fold for disease correction and more than 600-fold for disease modeling compared with BE4max. On the basis of the two-cell embryo injection method and RNA sequencing analysis, our A3G-BEs showed minimum genome- and transcriptome-wide off-target effects, achieving high targeting fidelity. 
    more » « less