skip to main content


Title: Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.  more » « less
Award ID(s):
1845856
NSF-PAR ID:
10269836
Author(s) / Creator(s):
; ; ;
Editor(s):
Lu, Jianfeng; Ward, Rachel
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
107
ISSN:
2640-3498
Page Range / eLocation ID:
570-604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Convolutional neural networks (CNNs) are revolutionizing imaging science for two- and three-dimensional images over Euclidean domains. However, many data sets are intrinsically non-Euclidean and are better modeled through other mathematical structures, such as graphs or manifolds. This state of affairs has led to the development of geometric deep learning, which refers to a body of research that aims to translate the principles of CNNs to these non-Euclidean structures. In the process, various challenges have arisen, including how to define such geometric networks, how to compute and train them efficiently, and what are their mathematical properties. In this letter we describe the geometric wavelet scattering transform, which is a type of geometric CNN for graphs and manifolds consisting of alternating multiscale geometric wavelet transforms and nonlinear activation functions. As the name suggests, the geometric wavelet scattering transform is an adaptation of the Euclidean wavelet scattering transform, first introduced by S. Mallat, to graph and manifold data. Like its Euclidean counterpart, the geometric wavelet scattering transform has several desirable properties. In the manifold setting these properties include isometric invariance up to a user specified scale and stability to small diffeomorphisms. Numerical results on manifold and graph data sets, including graph and manifold classification tasks as well as others, illustrate the practical utility of the approach. 
    more » « less
  2. Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCNs operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the PubMed dataset. 
    more » « less
  3. Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery. Both ligand and target molecules are represented as graphs with node and edge features encoding information about atomic elements and bonds respectively. Although existing deep learning models perform remarkably well at predicting physicochemical properties and binding affinities, the generation of new molecules with optimized properties remains challenging. Inherently, most GNNs perform poorly in whole-graph representation due to the limitations of the message-passing paradigm. Furthermore, step-by-step graph generation frameworks that use reinforcement learning or other sequential processing can be slow and result in a high proportion of invalid molecules with substantial post-processing needed in order to satisfy the principles of stoichiometry. To address these issues, we propose a representation-first approach to molecular graph generation. We guide the latent representation of an autoencoder by capturing graph structure information with the geometric scattering transform and apply penalties that structure the representation also by molecular properties. We show that this highly structured latent space can be directly used for molecular graph generation by the use of a GAN. We demonstrate that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis. 
    more » « less
  4. Abstract Motivation

    Best performing named entity recognition (NER) methods for biomedical literature are based on hand-crafted features or task-specific rules, which are costly to produce and difficult to generalize to other corpora. End-to-end neural networks achieve state-of-the-art performance without hand-crafted features and task-specific knowledge in non-biomedical NER tasks. However, in the biomedical domain, using the same architecture does not yield competitive performance compared with conventional machine learning models.

    Results

    We propose a novel end-to-end deep learning approach for biomedical NER tasks that leverages the local contexts based on n-gram character and word embeddings via Convolutional Neural Network (CNN). We call this approach GRAM-CNN. To automatically label a word, this method uses the local information around a word. Therefore, the GRAM-CNN method does not require any specific knowledge or feature engineering and can be theoretically applied to a wide range of existing NER problems. The GRAM-CNN approach was evaluated on three well-known biomedical datasets containing different BioNER entities. It obtained an F1-score of 87.26% on the Biocreative II dataset, 87.26% on the NCBI dataset and 72.57% on the JNLPBA dataset. Those results put GRAM-CNN in the lead of the biological NER methods. To the best of our knowledge, we are the first to apply CNN based structures to BioNER problems.

    Availability and implementation

    The GRAM-CNN source code, datasets and pre-trained model are available online at: https://github.com/valdersoul/GRAM-CNN.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. null (Ed.)
    We investigate the ways in which a machine learning architecture known as Reservoir Computing learns concepts such as “similar” and “different” and other relationships between image pairs and generalizes these concepts to previously unseen classes of data. We present two Reservoir Computing architectures, which loosely resemble neural dynamics, and show that a Reservoir Computer (RC) trained to identify relationships between image pairs drawn from a subset of training classes generalizes the learned relationships to substantially different classes unseen during training. We demonstrate our results on the simple MNIST handwritten digit database as well as a database of depth maps of visual scenes in videos taken from a moving camera. We consider image pair relationships such as images from the same class; images from the same class with one image superposed with noise, rotated 90°, blurred, or scaled; images from different classes. We observe that the reservoir acts as a nonlinear filter projecting the input into a higher dimensional space in which the relationships are separable; i.e., the reservoir system state trajectories display different dynamical patterns that reflect the corresponding input pair relationships. Thus, as opposed to training in the entire high-dimensional reservoir space, the RC only needs to learns characteristic features of these dynamical patterns, allowing it to perform well with very few training examples compared with conventional machine learning feed-forward techniques such as deep learning. In generalization tasks, we observe that RCs perform significantly better than state-of-the-art, feed-forward, pair-based architectures such as convolutional and deep Siamese Neural Networks (SNNs). We also show that RCs can not only generalize relationships, but also generalize combinations of relationships, providing robust and effective image pair classification. Our work helps bridge the gap between explainable machine learning with small datasets and biologically inspired analogy-based learning, pointing to new directions in the investigation of learning processes. 
    more » « less