skip to main content

Title: Hyperbolic Graph Convolutional Neural Networks
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCNs operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving more » state-of-the art on the PubMed dataset. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Advances in neural information processing systems
Sponsoring Org:
National Science Foundation
More Like this
  1. Learning the low-dimensional representations of graphs (i.e., network embedding) plays a critical role in network analysis and facilitates many downstream tasks. Recently graph convolutional networks (GCNs) have revolutionized the field of network embedding, and led to state-of-the-art performance in network analysis tasks such as link prediction and node classification. Nevertheless, most of the existing GCN-based network embedding methods are proposed for unsigned networks. However, in the real world, some of the networks are signed, where the links are annotated with different polarities, e.g., positive vs. negative. Since negative links may have different properties from the positive ones and can alsomore »significantly affect the quality of network embedding. Thus in this paper, we propose a novel network embedding framework SNEA to learn Signed Network Embedding via graph Attention. In particular, we propose a masked self-attentional layer, which leverages self-attention mechanism to estimate the importance coefficient for pair of nodes connected by different type of links during the embedding aggregation process. Then SNEA utilizes the masked self-attentional layers to aggregate more important information from neighboring nodes to generate the node embeddings based on balance theory. Experimental results demonstrate the effectiveness of the proposed framework through signed link prediction task on several real-world signed network datasets.« less
  2. In this paper, we propose a supervised graph representation learning method to model the relationship between brain functional connectivity (FC) and structural connectivity (SC) through a graph encoder-decoder system. The graph convolutional network (GCN) model is leveraged in the encoder to learn lower-dimensional node representations (i.e. node embeddings) integrating information from both node attributes and network topology. In doing so, the encoder manages to capture both direct and indirect interactions between brain regions in the node embeddings which later help reconstruct empirical FC networks. From node embeddings, graph representations are learnt to embed the entire graphs into a vector space.more »Our end-to-end model utilizes a multi-objective loss function to simultaneously learn node representations for FC network reconstruction and graph representations for subject classification. The experiment on a large population of non-drinkers and heavy drinkers shows that our model can provide a characterization of the population pattern in the SC-FC relationship, while also learning features that capture individual uniqueness for subject classification. The identified key brain subnetworks show significant between-group difference and support the promising prospect of GCN-based graph representation learning on brain networks to model human brain activity and function.« less
  3. The Sylvester equation offers a powerful and unifying primitive for a variety of important graph mining tasks, including network alignment, graph kernel, node similarity, subgraph matching, etc. A major bottleneck of Sylvester equation lies in its high computational complexity. Despite tremendous effort, state-of-the-art methods still require a complexity that is at least \em quadratic in the number of nodes of graphs, even with approximations. In this paper, we propose a family of Krylov subspace based algorithms (\fasten) to speed up and scale up the computation of Sylvester equation for graph mining. The key idea of the proposed methods is tomore »project the original equivalent linear system onto a Kronecker Krylov subspace. We further exploit (1) the implicit representation of the solution matrix as well as the associated computation, and (2) the decomposition of the original Sylvester equation into a set of inter-correlated Sylvester equations of smaller size. The proposed algorithms bear two distinctive features. First, they provide the \em exact solutions without any approximation error. Second, they significantly reduce the time and space complexity for solving Sylvester equation, with two of the proposed algorithms having a \em linear complexity in both time and space. Experimental evaluations on a diverse set of real networks, demonstrate that our methods (1) are up to $10,000\times$ faster against Conjugate Gradient method, the best known competitor that outputs the exact solution, and (2) scale up to million-node graphs.« less
  4. Karlapalem, Kamal ; Cheng, Hong ; Ramakrishnan, Naren ; Reddy, P. Krishna ; Srivastava, Jaideep ; Chakraborty, Tanmoy (Ed.)
    Constrained learning, a weakly supervised learning task, aims to incorporate domain constraints to learn models without requiring labels for each instance. Because weak supervision knowledge is useful and easy to obtain, constrained learning outperforms unsupervised learning in performance and is preferable than supervised learning in terms of labeling costs. To date, constrained learning, especially constrained clustering, has been extensively studied, but was primarily focused on data in the Euclidean space. In this paper, we propose a weak supervision network embedding (WSNE) for constrained learning of graphs. Because no label is available for individual nodes, we propose a new loss functionmore »to quantify the constraint-based loss, and integrate this loss in a graph convolutional neural network (GCN) and variational graph auto-encoder (VGAE) combined framework to jointly model graph structures and node attributes. The joint optimization allows WSNE to learn embedding not only preserving network topology and content, but also satisfying the constraints. Experiments show that WSNE outperforms baselines for constrained graph learning tasks, including constrained graph clustering and constrained graph classification.« less
  5. Informative representation of road networks is essential to a wide variety of applications on intelligent transportation systems. In this article, we design a new learning framework, called Representation Learning for Road Networks (RLRN), which explores various intrinsic properties of road networks to learn embeddings of intersections and road segments in road networks. To implement the RLRN framework, we propose a new neural network model, namely Road Network to Vector (RN2Vec), to learn embeddings of intersections and road segments jointly by exploring geo-locality and homogeneity of them, topological structure of the road networks, and moving behaviors of road users. In additionmore »to model design, issues involving data preparation for model training are examined. We evaluate the learned embeddings via extensive experiments on several real-world datasets using different downstream test cases, including node/edge classification and travel time estimation. Experimental results show that the proposed RN2Vec robustly outperforms existing methods, including (i) Feature-based methods : raw features and principal components analysis (PCA); (ii) Network embedding methods : DeepWalk, LINE, and Node2vec; and (iii) Features + Network structure-based methods : network embeddings and PCA, graph convolutional networks, and graph attention networks. RN2Vec significantly outperforms all of them in terms of F1-score in classifying traffic signals (11.96% to 16.86%) and crossings (11.36% to 16.67%) on intersections and in classifying avenue (10.56% to 15.43%) and street (11.54% to 16.07%) on road segments, as well as in terms of Mean Absolute Error in travel time estimation (17.01% to 23.58%).« less