skip to main content


Title: Reconstructing Historical Forest Cover and Land Use Dynamics in the Northeastern United States Using Geospatial Analysis and Airborne LiDAR
The northeastern United States experienced extensive deforestation during the seventeenth through twentieth centuries primarily for European agriculture, which peaked in the mid-nineteenth century, and followed by widespread farmstead abandonment and reforestation. Analysis of airborne light detection and ranging (LiDAR) data has revealed thousands of historical land-use features with topographic signatures across the landscape under the region’s now-dense forest canopy. This study investigates two different types of features—stone walls and relict charcoal hearths—both of which are associated with widespread deforestation in the region. Our results demonstrate that LiDAR is an effective tool in reconstructing and quantifying the distribution and magnitude of historical forest cover using these relict land use features as a reliable proxy. Furthermore, these methods allow for direct quantification of cumulative land clearing over time in each town, in addition to the extent, intensity, and spatial distribution of cleared land and forest cover.  more » « less
Award ID(s):
1654462
NSF-PAR ID:
10270644
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annals of the American Association of Geographers
ISSN:
2469-4452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the northeastern United States, widespread deforestation occurred during the 17–19th centuries as a result of Euro-American agricultural activity. In the late 19th and early 20th centuries, much of this agricultural landscape was reforested as the region experienced industrialization and farmland became abandoned. Many previous studies have addressed these landscape changes, but the primary method for estimating the amount and distribution of cleared and forested land during this time period has been using archival records. This study estimates areas of cleared and forested land using historical land use features extracted from airborne LiDAR data and compares these estimates to those from 19th century archival maps and agricultural census records for several towns in Massachusetts, a state in the northeastern United States. Results expand on previous studies in adjacent areas, and demonstrate that features representative of historical deforestation identified in LiDAR data can be reliably used as a proxy to estimate the spatial extents and area of cleared and forested land in Massachusetts and elsewhere in the northeastern United States. Results also demonstrate limitations to this methodology which can be mitigated through an understanding of the surficial geology of the region as well as sources of error in archival materials. 
    more » « less
  2. Advanced deep learning methods combined with regional, open access, airborne Light Detection and Ranging (LiDAR) data have great potential to study the spatial extent of historic land use features preserved under the forest canopy throughout New England, a region in the northeastern United States. Mapping anthropogenic features plays a key role in understanding historic land use dynamics during the 17th to early 20th centuries, however previous studies have primarily used manual or semi-automated digitization methods, which are time consuming for broad-scale mapping. This study applies fully-automated deep convolutional neural networks (i.e., U-Net) with LiDAR derivatives to identify relict charcoal hearths (RCHs), a type of historical land use feature. Results show that slope, hillshade, and Visualization for Archaeological Topography (VAT) rasters work well in six localized test regions (spatial scale: <1.5 km2, best F1 score: 95.5%), but also at broader extents at the town level (spatial scale: 493 km2, best F1 score: 86%). The model performed best in areas with deciduous forest and high slope terrain (e.g., >15 degrees) (F1 score: 86.8%) compared to coniferous forest and low slope terrain (e.g., <15 degrees) (F1 score: 70.1%). Overall, our results contribute to current methodological discussions regarding automated extraction of historical cultural features using deep learning and LiDAR. 
    more » « less
  3. Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.

     
    more » « less
  4. Abstract

    Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.

     
    more » « less
  5. Abstract In this study, we investigate the air temperature response to land-use and land-cover change (LULCC; cropland expansion and deforestation) using subgrid land model output generated by a set of CMIP6 model simulations. Our study is motivated by the fact that ongoing land-use activities are occurring at local scales, typically significantly smaller than the resolvable scale of a grid cell in Earth system models. It aims to explore the potential for a multimodel approach to better characterize LULCC local climatic effects. On an annual scale, the CMIP6 models are in general agreement that croplands are warmer than primary and secondary land (psl; mainly forests, grasslands, and bare ground) in the tropics and cooler in the mid–high latitudes, except for one model. The transition from warming to cooling occurs at approximately 40°N. Although the surface heating potential, which combines albedo and latent heat flux effects, can explain reasonably well the zonal mean latitudinal subgrid temperature variations between crop and psl tiles in the historical simulations, it does not provide a good prediction on subgrid temperature for other land tile configurations (crop vs forest; grass vs forest) under Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) forcing scenarios. A subset of simulations with the CESM2 model reveals that latitudinal subgrid temperature variation is positively related to variation in net surface shortwave radiation and negatively related to variation in the surface energy redistribution factor, with a dominant role from the latter south of 30°N. We suggest that this emergent relationship can be used to benchmark the performance of land surface parameterizations and for prediction of local temperature response to LULCC. 
    more » « less