skip to main content


Title: Estimating Historically Cleared and Forested Land in Massachusetts, USA, Using Airborne LiDAR and Archival Records
In the northeastern United States, widespread deforestation occurred during the 17–19th centuries as a result of Euro-American agricultural activity. In the late 19th and early 20th centuries, much of this agricultural landscape was reforested as the region experienced industrialization and farmland became abandoned. Many previous studies have addressed these landscape changes, but the primary method for estimating the amount and distribution of cleared and forested land during this time period has been using archival records. This study estimates areas of cleared and forested land using historical land use features extracted from airborne LiDAR data and compares these estimates to those from 19th century archival maps and agricultural census records for several towns in Massachusetts, a state in the northeastern United States. Results expand on previous studies in adjacent areas, and demonstrate that features representative of historical deforestation identified in LiDAR data can be reliably used as a proxy to estimate the spatial extents and area of cleared and forested land in Massachusetts and elsewhere in the northeastern United States. Results also demonstrate limitations to this methodology which can be mitigated through an understanding of the surficial geology of the region as well as sources of error in archival materials.  more » « less
Award ID(s):
1654462
NSF-PAR ID:
10425444
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
21
ISSN:
2072-4292
Page Range / eLocation ID:
4318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The northeastern United States experienced extensive deforestation during the seventeenth through twentieth centuries primarily for European agriculture, which peaked in the mid-nineteenth century, and followed by widespread farmstead abandonment and reforestation. Analysis of airborne light detection and ranging (LiDAR) data has revealed thousands of historical land-use features with topographic signatures across the landscape under the region’s now-dense forest canopy. This study investigates two different types of features—stone walls and relict charcoal hearths—both of which are associated with widespread deforestation in the region. Our results demonstrate that LiDAR is an effective tool in reconstructing and quantifying the distribution and magnitude of historical forest cover using these relict land use features as a reliable proxy. Furthermore, these methods allow for direct quantification of cumulative land clearing over time in each town, in addition to the extent, intensity, and spatial distribution of cleared land and forest cover. 
    more » « less
  2. Advanced deep learning methods combined with regional, open access, airborne Light Detection and Ranging (LiDAR) data have great potential to study the spatial extent of historic land use features preserved under the forest canopy throughout New England, a region in the northeastern United States. Mapping anthropogenic features plays a key role in understanding historic land use dynamics during the 17th to early 20th centuries, however previous studies have primarily used manual or semi-automated digitization methods, which are time consuming for broad-scale mapping. This study applies fully-automated deep convolutional neural networks (i.e., U-Net) with LiDAR derivatives to identify relict charcoal hearths (RCHs), a type of historical land use feature. Results show that slope, hillshade, and Visualization for Archaeological Topography (VAT) rasters work well in six localized test regions (spatial scale: <1.5 km2, best F1 score: 95.5%), but also at broader extents at the town level (spatial scale: 493 km2, best F1 score: 86%). The model performed best in areas with deciduous forest and high slope terrain (e.g., >15 degrees) (F1 score: 86.8%) compared to coniferous forest and low slope terrain (e.g., <15 degrees) (F1 score: 70.1%). Overall, our results contribute to current methodological discussions regarding automated extraction of historical cultural features using deep learning and LiDAR. 
    more » « less
  3. Abstract

    Recent cyanobacterial blooms in otherwise unproductive lakes may be warning signs of impending eutrophication in lakes important for recreation and drinking water, but little is known of their historical precedence or mechanisms of regulation. Here, we examined long‐term sedimentary records of both general and taxon‐specific trophic proxies from seven lakes of varying productivity in the northeastern United States to investigate their relationship to historical in‐lake, watershed, and climatic drivers of trophic status. Analysis of fossil pigments (carotenoids and chlorophylls) revealed variable patterns of past primary production across lakes over two centuries despite broadly similar changes in regional climate and land use. Sediment abundance of the cyanobacteriumGloeotrichia,a large, toxic, nitrogen‐fixing taxon common in recent blooms in this region, revealed that this was not a new taxon in the phytoplankton communities but rather had been present for centuries. Histories ofGloeotrichiaabundance differed strikingly across lakes and were not consistently associated with most other sediment proxies of trophic status. Changes in ice cover most often coincided with changes in fossil pigments, and changes in watershed land use were often related to changes inGloeotrichiaabundance, although no single climatic or land‐use factor was associated with proxy changes across all seven lakes. The degree to which changes in lake sediment records co‐occurred with changes in the timing of ice‐out or agricultural land use was negatively correlated with the ratio of watershed area to lake area. Thus, both climate and land management appeared to play key roles in regulation of primary production in these lakes, although the manner in which these factors influenced lakes was mediated by catchment morphometry. Improved understanding of the past interactions between climate change, land use, landscape setting, and water quality underscores the complexity of mechanisms regulating lake and cyanobacterial production and highlights the necessity of considering these interactions—rather than searching for a singular mechanism—when evaluating the causes of ongoing changes in low‐nutrient lakes.

     
    more » « less
  4. Abstract

    Changing landscape heterogeneity can influence connectivity and alter genetic variation in local populations, but there can be a lag between ecological change and evolutionary responses. Temporal lag effects might be acute in agroecosystems, where land cover has changed substantially in the last two centuries. Here, we evaluate how patterns of an insect pest’s genetic differentiation are related to past and present agricultural land cover change over a 150‐year period. We quantified change in the amount of potato,Solanum tuberosumL., land cover since 1850 using county‐level agricultural census reports, obtained allele frequency data from 7,408 single‐nucleotide polymorphism loci, and compared effects of historic and contemporary landscape connectivity on genetic differentiation of Colorado potato beetle,Leptinotarsa decemlineataSay, in two agricultural landscapes in the United States. We found that potato land cover peaked in Wisconsin in the early 1900s, followed by rapid decline and spatial concentration, whereas it increased in amount and extent in the Columbia Basin of Oregon and Washington beginning in the 1960s. In both landscapes, we found small effect sizes of landscape resistance on genetic differentiation, but a 20× to 1,000× larger effect of contemporary relative to historic landscape resistances. Demographic analyses suggest population size trajectories were largely consistent among regions and therefore are not likely to have differentially impacted the observed patterns of population structure in each region. Weak landscape genetic associations might instead be related to the coarse resolution of our historical land cover data. Despite rapid changes in agricultural landscapes over the last two centuries, genetic differentiation amongL. decemlineatapopulations appears to reflect ongoing landscape change. The historical landscape genetic framework employed in this study is broadly applicable to other agricultural pests and might reveal general responses of pests to agricultural land‐use change.

     
    more » « less
  5. Abstract

    A notable characteristic of terrain in non‐urbanized deglaciated areas of northeastern North America is the microtopography created by processes related to surficial geology, deglaciation and mechanical disturbances to surface materials from excavating events, most of which are caused by tree throw in the modern landscape. The features are often on the scale of 1–4 m across and decimetres to a metre in depth, appearing as ‘puddles’ during intense or high‐magnitude precipitation events. Generalized storage capacity values have been summarized in textbooks for varied landscape conditions, but surprisingly little information is available about how microtopography and related surface water storage varies in dominant physiographic settings in deglaciated landscapes defined by slope, surficial geology and land cover conditions. The increasing availability of elevation data at a horizontal resolution of 2 m or higher has made it possible to remotely evaluate differences in terrain elevation and quantify upland surface water storage capacity from relatively small topographic depressions. Here, we describe and quantify these topographic features in several coastal and inland watersheds in the state of Maine (USA) with measurements of depression volume calculated from digital elevation models (DEMs) using a pit filling approach. Results show that microtopographic storage capacity varies with slope and land cover conditions in deglaciated terrain of northeastern North America. Basin‐average surface water depression storage capacity estimates range from ~4 mm to as low as 0.2 mm. Human interventions such as clearing land for agriculture are associated with lower microtopographic surface water storage capacity than forested landscapes in the region.

     
    more » « less