skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The interiors of Uranus and Neptune: current understanding and open questions
Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets’ internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.  more » « less
Award ID(s):
1908615
PAR ID:
10270678
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
378
Issue:
2187
ISSN:
1364-503X
Page Range / eLocation ID:
20190474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The anomalous nondipolar and nonaxisymmetric magnetic fields of Uranus and Neptune have long challenged conventional views of planetary dynamos. A thin-shell dynamo conjecture captures the observed phenomena but leaves unexplained the fundamental material basis and underlying mechanism. Here we report extensive quantum-mechanical calculations of polymorphism in the hydrogen–oxygen system at the pressures and temperatures of the deep interiors of these ice giant planets (to >600 GPa and 7,000 K). The results reveal the surprising stability of solid and fluid trihydrogen oxide (H 3 O) at these extreme conditions. Fluid H 3 O is metallic and calculated to be stable near the cores of Uranus and Neptune. As a convecting fluid, the material could give rise to the magnetic field consistent with the thin-shell dynamo model proposed for these planets. H 3 O could also be a major component in both solid and superionic forms in other (e.g., nonconvecting) layers. The results thus provide a materials basis for understanding the enigmatic magnetic-field anomalies and other aspects of the interiors of Uranus and Neptune. These findings have direct implications for the internal structure, composition, and dynamos of related exoplanets. 
    more » « less
  2. Abstract We study the constraining power of a high-precision measurement of the gravity field for Uranus and Neptune, as could be delivered by a low-periapse orbiter. Our study is practical, assessing the possible deliverables and limitations of such a mission with respect to the structure of the planets. Our study is also academic, assessing in a general way the relative importance of the low-order gravity, high-order gravity, rotation rate, and moment of inertia (MOI) in constraining planetary structure. We attempt to explore all possible interior density structures of a planet that are consistent with hypothetical gravity data via MCMC sampling of parameterized density profiles. When the gravity field is poorly known, as it is today, uncertainties in the rotation rate on the order of 10 minutes are unimportant, as they are interchangeable with uncertainties in the gravity coefficients. By the same token, when the gravity field is precisely determined, the rotation rate must be known to comparable precision. When gravity and rotation are well known, the MOI becomes well constrained, limiting the usefulness of independent MOI determinations unless they are extraordinarily precise. For Uranus and Neptune, density profiles can be well constrained. However, the nonuniqueness of the relative roles of H/He, watery volatiles, and rock in the deep interior will still persist with high-precision gravity data. Nevertheless, the locations and magnitudes (in pressure space) of any large-scale composition gradient regions can likely be identified, offering a crucially better picture of the interiors of Uranus or Neptune. 
    more » « less
  3. Abstract The impact of the inner structure and thermal history of planets on their observable features, such as luminosity or magnetic field, crucially depends on the poorly known heat and charge transport properties of their internal layers. The thermal and electric conductivities of different phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular dynamics, leveraging recent progresses in the theory and data analysis of transport in extended systems. The implications of our findings on the evolution models of the ice giants are briefly discussed. 
    more » « less
  4. Abstract Many planets in the solar system and across the Galaxy have hydrogen-rich atmospheres overlying more heavy element-rich interiors with which they interact for billions of years. Atmosphere–interior interactions are thus crucial to understanding the formation and evolution of these bodies. However, this understanding is still lacking in part because the relevant pressure–temperature conditions are extreme. We conduct molecular dynamics simulations based on density functional theory to investigate how hydrogen and water interact over a wide range of pressure and temperature, encompassing the interiors of Neptune-sized and smaller planets. We determine the critical curve at which a single homogeneous phase exsolves into two separate hydrogen-rich and water-rich phases, finding good agreement with existing experimental data. We find that the temperature along the critical curve increases with increasing pressure and shows the influence of a change in fluid structure from molecular to atomic near 30 GPa and 3000 K, which may impact magnetic field generation. The internal temperatures of many exoplanets, including TOI-270 d and K2-18 b, may lie entirely above the critical curve: the envelope is expected to consist of a single homogeneous hydrogen–water fluid, which is much less susceptible to atmospheric loss as compared with a pure hydrogen envelope. As planets cool, they cross the critical curve, leading to rainout of water-rich fluid and an increase in internal luminosity. Compositions of the resulting outer, hydrogen-rich and inner, water-rich envelopes depend on age and instellation and are governed by thermodynamics. Rainout of water may be occurring in Uranus and Neptune at present. 
    more » « less
  5. Abstract We present the Rossiter–McLaughlin measurement of the sub-Neptune TOI-1759A b with MAROON-X. A joint analysis with MuSCAT3 photometry and nine additional TESS transits produces a sky-projected obliquity of ∣λ∣ = 4° ± 18°. We also derive a true obliquity ofψ= 24° ± 12° making this planet consistent with full alignment albeit to <1σ. With a period of 18.85 days and ana/R*of 40, TOI-1759A b is the longest period single sub-Neptune to have a measured obliquity. It joins a growing number of smaller planets which have had this measurement made and, along with K2-25 b, is the only single, aligned sub-Neptune known to date. We also provide an overview of the emerging distribution of obliquity measurements for planets withR< 8R. We find that these types of planets tend toward alignment, especially the sub-Neptunes and super-Earths, implying a dynamically cool formation history. The majority of misaligned planets in this category have 4 <R≤ 8Rand are more likely to be isolated than planets rather than in compact systems. We find this result to be significant at the 3σlevel, consistent with previous studies. In addition, we conduct injection and recovery testing on available archival radial velocity data to put limits on the presence of massive companions in these systems. Current archival data is insufficient for most systems to have detected a giant planet. 
    more » « less