skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Localization and coalescence of seismicity before large earthquakes
SUMMARY We examine localization processes of low magnitude seismicity in relation to the occurrence of large earthquakes using three complementary analyses: (i) estimated production of rock damage by background events, (ii) evolving occupied fractional area of background seismicity and (iii) progressive coalescence of individual earthquakes into clusters. The different techniques provide information on different time scales and on the spatial extent of weakened damaged regions. Techniques (i) and (ii) use declustered catalogues to avoid the occasional strong fluctuations associated with aftershock sequences, while technique (iii) examines developing clusters in entire catalogue data. We analyse primarily earthquakes around large faults that are locked in the interseismic periods, and examine also as a contrasting example seismicity from the creeping Parkfield section of the San Andreas fault. Results of analysis (i) show that the M > 7 Landers 1992, Hector Mine 1999, El Mayor-Cucapah 2010 and Ridgecrest 2019 main shocks in Southern and Baja California were preceded in the previous decades by generation of rock damage around the eventual rupture zones. Analysis (ii) reveals localization (reduced fractional area) 2–3 yr before these main shocks and before the M > 7 Düzce 1999 earthquake in Turkey. Results with technique (iii) indicate that individual events tend to coalesce rapidly to clusters in the final 1–2 yr before the main shocks. Corresponding analyses of data from the Parkfield region show opposite delocalization patterns and decreasing clustering before the 2004 M6 earthquake. Continuing studies with these techniques, combined with analysis of geodetic data and insights from laboratory experiments and model simulations, might improve the ability to track preparation processes leading to large earthquakes.  more » « less
Award ID(s):
1723033 1722561
PAR ID:
10271605
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
223
Issue:
1
ISSN:
0956-540X
Page Range / eLocation ID:
561 to 583
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. Hence, our research aims to develop a novel method to image fault damage zones using high-frequency P-waves reflected within them. Previous studies have demonstrated that fault damage zones can amplify high-frequency waves along directions close to fault strike. The associated frequency band of the amplified secondary peak may be used to estimate the width and velocity contrast of the fault damage zone. Here we use the stacked P-wave velocity spectra of M1.5–3 earthquakes in the Parkfield region to identify the azimuthal variation in high-frequency energy. Our preliminary results show that for 62% of the Parkfield clusters, stations close to the fault strike record more high-frequency energies around 10–20 Hz. The frequency band is lower than what we observed for the 2019 Ridgecrest earthquakes region, and corresponds to a fault zone velocity reduction of ~50% assuming a fault zone width of 200m. We also observe along-strike differences in our results, where clusters along some fault sections show greater azimuthal variation than clusters in other sections. Moreover, to account for the possible effects of site conditions underneath the stations, we will quantify their effects using the spectra of regional earthquakes. We will compute the root-mean-square spectra at different frequency bands for each event, and calculate the average deviation in spectra at each station. We can then generate an empirical correction term for each station as a function of frequency. By applying these corrections to the stacked P-wave velocity spectra of our earthquake clusters, we can separate the contribution of site effects from fault zone structures. Our results demonstrate that the new method can be applied to search for fault damage zone structures in different tectonic regions with broadband stations in order to enhance our understanding of the co-evolution of fault zones and earthquake cycle. 
    more » « less
  2. Abstract We present the high-resolution Parkfield matched filter relocated earthquake (PKD-MR) catalog for the 2004 Mw 6 Parkfield earthquake sequence in central California. We use high-quality seismic data recorded by the borehole High Resolution Seismic Network combined with matched filter detection and relocations from cross-correlation derived differential travel times. We determine the magnitudes of newly detected events by computing the amplitude ratio between the detections and templates using a principal component fit. The relocated catalog spans from 6 November 2003 to 28 March 2005 and contains 13,914 earthquakes, which is about three times the number of events listed in the Northern California Seismic Network catalog. Our results on the seismicity rate changes before the 2004 mainshock do not show clear precursory signals, although we find an increase in the seismic activity in the creeping section of the San Andreas fault (SAF) (about ∼30 km northwest of the mainshock epicenter) in the weeks prior to the mainshock. We also observe a decrease in the b-value parameter in the Gutenberg–Richter relationship in the creeping section in the weeks prior to the mainshock. Our results suggest stress is increasingly released seismically in the creeping section, accompanied by a decreasing aseismic creeping rate before the mainshock occurrence. However, b-value and seismicity rates remain stable in the Parkfield section where the 2004 mainshock ruptured. This updated catalog can be used to study the evolution of aftershocks and their relations to afterslip following the 2004 Parkfield mainshock, seismicity before the mainshock, and how external stresses interact with the Parkfield section of the SAF and the 2004 sequence. 
    more » « less
  3. Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. The properties and structure of fault damage zones are often characterized using dense arrays of seismic stations located directly above the faults. However, such arrays may not always be available. Hence, our research aims to develop a novel method to image fault damage zones using broadband stations at relatively larger distances. Previous kinematic simulations and a case study of the 2003 Big Bear earthquake sequence demonstrated that fault damage zones can act as effective waveguides, amplifying high-frequency waves along directions close to fault strike via multiple reflections within the fault damage zone. The amplified high-frequency energy can be observed using the stacked P-wave spectra of earthquake clusters with highly-similar waveforms (Huang et al., 2016). We attempt to identify the high-frequency peak associated with fault zone waves in stacked spectra by conducting a large-scale study of small earthquakes (M1.5–3). We use high quality broadband data from seismic stations at hypocentral distances of 20-100km in the 2004 Parkfield and 2019 Ridgecrest earthquake regions. First, we group earthquakes in clusters by their locations and their waveform similarity, and then stack their velocity spectra to average the source effects of individual earthquakes. We applied our method to the 2019 Ridgecrest earthquake sequence, and our preliminary results show that stations close to the fault strike tend to record more high-frequency energies around the characteristic frequency of fault zone reflections. The frequency bands in which amplified high-frequency energies are observed may be used to estimate the width and velocity contrast of the fault damage zone. We aim to develop a robust and versatile method that can be used to search for fault damage zone structures and estimate their material properties, in order to shed light on earthquake source processes. 
    more » « less
  4. SUMMARY We present our estimations and comparisons of the in situ Vp/Vs ratios and seismicity characteristics for the Parkfield segment of the San Andreas fault in northern California and the San Jacinto Fault Zone and its adjacent regions in southern California. Our results show that the high-resolution in situ Vp/Vs ratios are much more complex than the tomographic Vp/Vs models. They show similar variation patterns to those in the tomographic Vp models, indicating that Vp/Vs ratios are controlled by material properties but are also strongly influenced by fluid contents. In Parkfield, we observe velocity contrasts between the creeping and locked sections. In southern California, we see small-scale anomalous Vp/Vs variation patterns, especially where fault segments intersect, terminate and change orientations. In addition, our investigation confirms that the seismicity in Parkfield is more repeatable than in southern California. However, the earthquakes in the southernmost portion of the San Andreas fault, the trifurcation area of the San Jacinto Fault Zone and the Imperial fault are as much likely falling into clusters as those in Parkfield. The correlation of highly similar events with anomalous in situ Vp/Vs ratios supports the important role of fluids in the occurrence of repeating earthquakes. The high-resolution Vp/Vs ratio estimation method and the corresponding results are helpful for revealing roles of fluids in driving earthquake, fault interaction and stress distribution in fault zones. 
    more » « less
  5. Abstract Mature strike‐slip faults are usually surrounded by a narrow zone of damaged rocks characterized by low seismic wave velocities. Observations of earthquakes along such faults indicate that seismicity is highly concentrated within this fault damage zone. However, the long‐term influence of the fault damage zone on complete earthquake cycles, that is, years to centuries, is not well understood. We simulate aseismic slip and dynamic earthquake rupture on a vertical strike‐slip fault surrounded by a fault damage zone for a thousand‐year timescale using fault zone material properties and geometries motivated by observations along major strike‐slip faults. The fault damage zone is approximated asan elastic layer with lower shear wave velocity than the surrounding rock. We find that dynamic wave reflections, whose characteristics are strongly dependent on the width and the rigidity contrast of the fault damage zone, have a prominent effect on the stressing history of the fault. The presence of elastic damage can partially explain the variability in the earthquake sizes and hypocenter locations along a single fault, which vary with fault damage zone depth, width and rigidity contrast from the host rock. The depth extent of the fault damage zone has a pronounced effect on the earthquake hypocenter locations, and shallower fault damage zones favor shallower hypocenters with a bimodal distribution of seismicity along depth. Our findings also suggest significant effects on the hypocenter distribution when the fault damage zone penetrates to the nucleation sites of earthquakes, likely being influenced by both lithological (material) and rheological (frictional) boundaries. 
    more » « less