- NSF-PAR ID:
- 10271625
- Date Published:
- Journal Name:
- Science
- Volume:
- 370
- Issue:
- 6517
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 716 to 720
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
During the last deglaciation, collapse of the saddle between the North American Cordilleran and Laurentide ice sheets led to rapid ice-sheet mass loss and separation, with meltwater discharge contributing to deglacial sea level rise. We directly date ice-sheet separation at the end of the saddle collapse using 64 10Be exposure ages along an ~1200-km transect of the ice-sheet suture zone. Collapse began in the south by 15.4 ± 0.4 ka and ended by 13.8 ± 0.1 ka at ~56◦N. Ice-sheet model simulations consistent with the 10Be ages find that the saddle collapse contributed 6.2–7.2 m to global mean sea-level rise from ~15.5 ka to ~14.0 ka, or approximately one third of global mean sea-level rise over this period. We determine 3.1–3.6 m of the saddle collapse meltwater was released during Meltwater Pulse 1A ~14.6-14.3 ka, constituting 20–40% of this meltwater pulse’s volume. Because the separation of the Cordilleran and Laurentide ice sheets occurred over 1–2 millennia, the associated release of meltwater during the saddle collapse supplied a smaller contribution to the magnitude of Meltwater Pulse 1A than has been recently proposed.more » « less
-
Abstract. The effect of the North Atlantic Ocean on the Greenland Ice Sheet through submarine melting of Greenland's tidewater glacier calving fronts is thought to be a key driver of widespread glacier retreat, dynamic mass loss and sea level contribution from the ice sheet. Despite its critical importance, problems of process complexity and scale hinder efforts to represent the influence of submarine melting in ice-sheet-scale models. Here we propose parameterizing tidewater glacier terminus position as a simple linear function of submarine melting, with submarine melting in turn estimated as a function of subglacial discharge and ocean temperature. The relationship is tested, calibrated and validated using datasets of terminus position, subglacial discharge and ocean temperature covering the full ice sheet and surrounding ocean from the period 1960–2018. We demonstrate a statistically significant link between multi-decadal tidewater glacier terminus position change and submarine melting and show that the proposed parameterization has predictive power when considering a population of glaciers. An illustrative 21st century projection is considered, suggesting that tidewater glaciers in Greenland will undergo little further retreat in a low-emission RCP2.6 scenario. In contrast, a high-emission RCP8.5 scenario results in a median retreat of 4.2 km, with a quarter of tidewater glaciers experiencing retreat exceeding 10 km. Our study provides a long-term and ice-sheet-wide assessment of the sensitivity of tidewater glaciers to submarine melting and proposes a practical and empirically validated means of incorporating ocean forcing into models of the Greenland ice sheet.more » « less
-
Abstract The phase relationships of sea surface temperature (SST) changes between the North Pacific and North Atlantic during deglacial millennial‐scale climate events have been of great interest. However, uncertainties remain partly due to the sparsity of deglacial SST records in the North Pacific. This study presents a new high‐resolution
‐SST record spanning the entire last deglaciation from core LV63‐41‐2 retrieved from the Northwestern Pacific off the Kamchatka Peninsula, which allows us to explore regional SST change patterns and associated driving mechanisms by compiling previously published SST data in the subarctic Pacific. The subarctic Pacific SST changes during the Bølling‐Allerød and Younger Dryas show in‐phase relationships in response to the North Atlantic SST variations, suggesting a dominant control of atmospheric teleconnections between both oceans. During Heinrich Stadial 1 (HS1) when the North Atlantic exhibited significant cooling, the subarctic Pacific SST developments are complex, showing gradual warming from the Last Glacial Maximum to HS1 in the Northwestern Pacific and cooling at the onset of HS1 in the Northeastern Pacific. We suggest that the inconsistent phase responses resulted from the combined effects of multiple processes, which involve an enhanced poleward advection of warm subtropical waters, cold meltwater inputs from the retreating Cordilleran Ice Sheet into the Northeastern Pacific, and a persistent La Niña‐like state in the tropical Pacific. -
Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.more » « less
-
Abstract Lower atmospheric CO2concentrations during the Last Glacial Maximum (LGM; 23.0–18.0 ka) have been attributed to the sequestration of respired carbon in the ocean interior, yet the mechanism responsible for the release of this CO2during the deglaciation remains uncertain. Here we present calculations of vertical differences in oxygen and carbon isotopes (∆δ18O and ∆δ13C, respectively) from a depth transect of southwest Pacific Ocean sediment cores to reconstruct changes in water mass structure and CO2storage. During the Last Glacial Maximum, ∆δ18O indicates a more homogenous deep Pacific below 1,100 m, whereas regional ∆δ13C elucidates greater sequestration of CO2in two distinct layers: enhanced CO2storage at intermediate depths between ~940 and 1,400 m, and significantly more CO2at 1,600 m and below. This highlights an isolated glacial intermediate water mass and places the main geochemical divide at least 500 m shallower than the Holocene. During the initial stages of the deglaciation in Heinrich Stadial 1 (17.5–14.5 ka), restructuring of the upper ~2,000 m of the southwest Pacific water column coincided with sea‐ice retreat and rapid CO2release from intermediate depths, while CO2release from the deep ocean was earlier and more gradual than waters above it. These changes suggest that sea‐ice retreat and shifts in Southern Ocean frontal locations contributed to rapid CO2ventilation from the Southern Ocean's intermediate depths and gradual ventilation from the deep ocean during the early deglaciation.