skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Timing of Cordilleran-Laurentide ice-sheet separation: Implications for sea-level rise
During the last deglaciation, collapse of the saddle between the North American Cordilleran and Laurentide ice sheets led to rapid ice-sheet mass loss and separation, with meltwater discharge contributing to deglacial sea level rise. We directly date ice-sheet separation at the end of the saddle collapse using 64 10Be exposure ages along an ~1200-km transect of the ice-sheet suture zone. Collapse began in the south by 15.4 ± 0.4 ka and ended by 13.8 ± 0.1 ka at ~56◦N. Ice-sheet model simulations consistent with the 10Be ages find that the saddle collapse contributed 6.2–7.2 m to global mean sea-level rise from ~15.5 ka to ~14.0 ka, or approximately one third of global mean sea-level rise over this period. We determine 3.1–3.6 m of the saddle collapse meltwater was released during Meltwater Pulse 1A ~14.6-14.3 ka, constituting 20–40% of this meltwater pulse’s volume. Because the separation of the Cordilleran and Laurentide ice sheets occurred over 1–2 millennia, the associated release of meltwater during the saddle collapse supplied a smaller contribution to the magnitude of Meltwater Pulse 1A than has been recently proposed.  more » « less
Award ID(s):
2300559
PAR ID:
10515280
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Quaternary Science Reviews
Volume:
328
Issue:
C
ISSN:
0277-3791
Page Range / eLocation ID:
108554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate reconstruction of Laurentide Ice Sheet volume changes following the Last Glacial Maximum is critical for understanding ice sheet contribution to sea-level rise, the resulting influence of meltwater on oceanic circulation, and the spatial and temporal patterns of deglaciation. Here, we provide empirical constraints on Laurentide Ice Sheet thinning during the last deglaciation by measuring in situ cosmogenic 10Be in 81 samples collected along vertical transects of nine mountains in the northeastern United States. In conjunction with 107 exposure age samples over five vertical transects from previous studies, we reconstruct ice sheet thinning history. At peripheral sites (within 200 km of the terminal moraine), we find evidence for ∼600 m of thinning between 19.5 ka and 17.5 ka, which is coincident with the slow initial margin retreat indicated by varve records. At locations >400 km north of the terminal moraine, exposure ages above and below 1200 m a.s.l. exhibit different patterns. Ages above this elevation are variable and older, while lower elevation ages are indistinguishable over 800−1000 m elevation ranges, a pattern that suggests a subglacial thermal boundary at ∼1200 m a.s.l. separating erosive, warm-based ice below and polythermal, minimally erosive ice above. Low-elevation ages from up-ice mountains are between 15 ka and 13 ka, which suggests rapid thinning of ∼1000 m coincident with Bølling-Allerød warming. These rates of rapid paleo-ice thinning are comparable to those of other vertical exposure age transects around the world and may have been faster than modern basin-wide thinning rates in Antarctica and Greenland, which suggests that the southeastern Laurentide Ice Sheet was highly sensitive to a warming climate. 
    more » « less
  2. Abstract As ice sheets load Earth's surface, they produce ice‐marginal depressions which, when filled with meltwater, become proglacial lakes. We include self‐consistently evolving proglacial lakes in a glacial isostatic adjustment (GIA) model and apply it to the Laurentide ice sheet over the last glacial cycle. We find that the locations of modeled lakes and the timing of their disappearance is consistent with the geological record. Lake loads can deflect topography by >10 m, and volumes collectively approach 30–45 cm global mean sea‐level equivalent. GIA increases deglaciation‐phase lake volume up to five‐fold and average along‐ice‐margin depth ≤90 m compared to glaciation‐phase ice volume analogs—differences driven by changes in the position and size of the peripheral bulge. Since ice‐marginal lake depth affects grounding‐line outflow, GIA‐modulated proglacial lake depths could affect ice‐sheet mass loss. Indeed, we find that Laurentide ice‐margin retreat rate sometimes correlates with proglacial lake presence, indicating that proglacial lakes aid glacial collapse. 
    more » « less
  3. Richard B. Waitt; Glenn D. Thackray; Alan R. Gillespie (Ed.)
    The northward retreat history of the Laurentide ice sheet through the lowlands of the northeastern United States during the last deglaciation is well constrained, but its vertical thinning history is less well known because of the lack of direct constraints on ice thickness through time and space. In addition, the highest elevations in New England are characterized by gently sloping upland surfaces and weathered block fields, features with an uncertain history. To better constrain ice-sheet history in this area and its relationship to alpine geomorphology, we present 20 new 10Be and seven in situ 14C cosmogenic nuclide measurements along an elevation transect at Mount Washington, New Hampshire, the highest mountain in the northeastern United States (1917 m above sea level [a.s.l.]). Our results suggest substantially different exposure and erosion histories on the upper and lower parts of the mountain. Above 1600 m a.s.l., 10Be and in situ 14C measurements are consistent with upper reaches of the mountain deglaciating by 18 ka. However, some 10Be ages are up to several times greater than the age of the last deglaciation, consistent with weakly erosive, cold-based ice that did not deeply erode preglacial surfaces. Below 1600 m a.s.l., 10Be ages are indistinguishable over a nearly 900 m range in elevation and imply rapid ice-surface lowering ca. 14.1 ± 1.1 ka (1 standard deviation; n = 9). This shift from slow thinning early in the deglaciation on the upper part of the mountain to abrupt thinning across the lower elevations coincided with accelerated ice-margin retreat through the region recorded by Connecticut River valley varve records during the Bølling interstadial. The Mount Washington cosmogenic nuclide vertical transect and the Connecticut River valley varve record, along with other New England cosmogenic nuclide records, suggest rapid ice-volume loss in the interior northeastern United States in response to Bølling warming. 
    more » « less
  4. Polar temperatures during the Last Interglacial [LIG; ~129 to 116 thousand years (ka)] were warmer than today, making this time period an important testing ground to better understand how ice sheets respond to warming. However, it remains debated how much and when the Antarctic and Greenland ice sheets changed during this period. Here, we present a combination of new and existing absolutely dated LIG sea-level observations from Britain, France, and Denmark. Because of glacial isostatic adjustment (GIA), the LIG Greenland ice melt contribution to sea-level change in this region is small, which allows us to constrain Antarctic ice change. We find that the Antarctic contribution to LIG global mean sea level peaked early in the interglacial (before 126 ka), with a maximum contribution of 5.7 m (50th percentile, 3.6 to 8.7 m central 68% probability) before declining. Our results support an asynchronous melt history over the LIG, with an early Antarctic contribution followed by later Greenland Ice Sheet mass loss. 
    more » « less
  5. Abstract. The timing of the Laurentide Ice Sheet's final retreat from North America's Laurentian Great Lakes is relevant to understanding regional meltwater routing, changing proglacial lake levels, and lake-bottom stratigraphy following the Last Glacial Maximum. Recessional moraines on Isle Royale, the largest island in Lake Superior, have been mapped but not directly dated. Here, we use the mean of 10 new 10Be exposure ages of glacial erratics from two recessional moraines (10.1 ± 1.1 ka, one standard deviation; excluding one anomalously young sample) to constrain the timing of Isle Royale's final deglaciation. This 10Be age is consistent with existing minimum-limiting 14C ages of basal organic sediment from two inland lakes on Isle Royale, a sediment core in Lake Superior southwest of the island, and an estimated deglaciation age of the younger of two subaqueous moraines between Isle Royale and Michigan's Keweenaw Peninsula. Relationships between Isle Royale's landform ages and Lake Superior bottom stratigraphy allow us to delineate the retreat of the Laurentide ice margin across and through Lake Superior in the early Holocene. We suggest that Laurentide ice was in contact with the southern shorelines of Lake Superior later than previously thought. 
    more » « less