skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Remote Labs 2.0 to the Rescue: Doing Science in a Pandemic
Laboratory experiences are a staple of science education (National Research Council 2006): Not only do they provide students with an avenue to acquire authentic skills needed for scientific research, referred to as science and engineering practices by NGSS, but they also allow students to go beyond rote memorization of facts to deepen their understanding of science through inquiry.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The science teacher
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less
  2. Citizen science programs offer opportunities for K-12 students to engage in authentic science inquiry. However, these programs often fall short of including learners as agents in the entire process, and thus contrast with the growing open science movement within scientific communities. Notably, study ideation and peer review, which are central to the making of science, are typically reserved for professional scientists. This study describes the implementation of an open science curriculum that engages high school students in a full cycle of scientific inquiry. We explored the focus and quality of students’ study designs and peer reviews, and their perceptions of open science based on their participation in the program. Specifically, we implemented a human brain and behavior citizen science unit in 6 classrooms across 3 high schools. After learning about open science and citizen science, students (N = 104) participated in scientist-initiated research studies, and then collaboratively proposed their own studies to investigate personally interesting questions about human behavior and the brain. Students then peer reviewed proposals of students from other schools. Based on a qualitative and quantitative analysis of students’ artifacts created in-unit and on a pre and posttest, we describe their interests, abilities, and self-reported experiences with study design and peer review. Our findings suggest that participation in open science in a human brain and behavior research context can engage students with critical aspects of experiment design, as well as with issues that are unique to human subjects research, such as research ethics. Meanwhile, the quality of students’ study designs and reviews changed in notable, but mixed, ways: While students improved in justifying the importance of research studies, they did not improve in their abilities to align methods to their research questions. In terms of peer review, students generally reported that their peers' feedback was helpful, but our analysis showed that student reviewers struggled to articulate concrete recommendations for improvement. In light of these findings, we discuss the need for curricula that support the development of research and review abilities by building on students’ interests, while also guiding students in transferring these abilities across a range of research foci. 
    more » « less
  3. Abstract Background

    Studying science identity has been useful for understanding students’ continuation in science-related education and career paths. Yet knowledge and theory related to science identity among students on the path to becoming a professional science researcher, such as students engaged in research at the undergraduate, postbaccalaureate, and graduate level, is still developing. It is not yet clear from existing science identity theory how particular science contexts, such as research training experiences, influence students’ science identities. Here we leverage existing science identity and professional identity theories to investigate how research training shapes science identity. We conducted a qualitative investigation of 30 early career researchers—undergraduates, postbaccalaureates, and doctoral students in a variety of natural science fields—to characterize how they recognized themselves as science researchers.


    Early career researchers (ECRs) recognized themselves as either science students or science researchers, which they distinguished from being a career researcher. ECRs made judgments, which we refer to as “science identity assessments”, in the context of interconnected work-learning and identity-learning cycles. Work-learning cycles referred to ECRs’ conceptions of the work they did in their research training experience. ECRs weighed the extent to which they perceived the work they did in their research training to show authenticity, offer room for autonomy, and afford opportunities for epistemic involvement. Identity-learning cycles encompassed ECRs’ conceptions of science researchers. ECRs considered the roles they fill in their research training experiences and if these roles aligned with their perceptions of the tasks and traits of perceived researchers. ECRs’ identity-learning cycles were further shaped by recognition from others. ECRs spoke of how recognition from others embedded within their research training experiences and from others removed from their research training experiences influenced how they see themselves as science researchers.


    We synthesized our findings to form a revised conceptual model of science researcher identity, which offers enhanced theoretical precision to study science identity in the future. We hypothesize relationships among constructs related to science identity and professional identity development that can be tested in further research. Our results also offer practical implications to foster the science researcher identity of ECRs.

    more » « less
  4. Lane College is a Historically Black College with a mission to educate underserved minority students. As part of a primarily undergraduate teaching institution, the Division of Natural and Physical Sciences provides students with a variety of hands-on experiences, including an eight-week summer research experience. Prior to the implementation of the Lane College summer research experience, only a small number of students participated in summer research or internships at other institutions. The Lane College summer undergraduate research experience aims to be more inclusive by eliminating GPA requirements, encouraging first- and second-year students to apply, and allowing students to select any of the available research projects in the areas of biology, chemistry, computer science, mathematics, or physics, regardless of major. Each year, twelve to fifteen students participate in mentored research in the areas of biology, chemistry, computer science, mathematics, and physics. The students participate in a professional development course twice per week where they learn about career opportunities in science and mathematics, preparing personal statements, scientific writing, and practice on how to effectively present their research findings. The students conduct their research in small groups with a faculty mentor. At the end of the summer, students present their overall results at the Lane Summer Science Symposium. Evaluation of student attitudes towards the research experience during the first iteration in summer 2021 indicates students internalized STEM community values, and developed a sense of self-efficacy for research, a strong sense of project ownership, and a sense of belonging to the science research community. Students participating in the evaluation believe that the experience made science more interesting and that they have better clarity of career opportunities in STEM. Similar levels of engagement were observed in the summers of 2022 and 2023. Students participating in the program are encouraged to submit abstracts to both regional and national conferences. This has resulted in 14 students presenting annually at discipline-specific conferences and one publication co-authored by two summer research students. This work is supported by grants NSF EES 2011938 and EDU 1833960. 
    more » « less
  5. An enormous reserve of information about the subglacial bedrock, tectonic and topographic evolution of Marie Byrd Land (MBL) exists within glaciomarine sediments of the Amundsen Sea shelf, slope and deep sea, and MBL marine shelf. Investigators of the NSF ICI-Hot and NSF Linchpin projects partnered with Arizona Laserchron Center to provide course-based undergraduate research experiences (CUREs) for from groups who do not ordinarily find access points to Antarctic science. Our courses enlist BIPOC and gender-expansive undergraduates in studies of ice-rafted debris (IRD) and bedrock samples, in order to impart skills, train in the use of research instrumentation, help students to develop confidence in their scientific abilities, and collaboratively address WAIS research questions at an early academic stage. CUREs afford benefits to graduate researchers and postdoctoral scientists, also, who join in as instructional faculty: CUREs allow GRs and PDs to engage in teaching that closely ties to their active research, yet provides practical experience to strengthen the academic portfolio (Cascella & Jez, 2018). Team members also develop art-science initiatives that engage students and community members who may not ordinarily engage with science, forging connections that make science relatable. Re-casting science topics through art centers personal connections and humanizes science, to promote understanding that goes beyond the purely analytical. Academic research shows that diverse undergraduates gain markedly from the convergence of art and science, and from involvement in collaborative research conducted within a CURE cohort, rather than as an individualized experience (e.g. Shanahan et al. 2022). The CUREs are offered as regular courses for credit, making access equitable via course enrollment. The course designation carries a legitimacy that is sought by students who balance academics with part-time employment. Course information is disseminated via STEM Bridge programs and/or an academic advising hub that reaches students from groups that are insufficiently represented within STEM and cryosphere science. CURE investigation of Amundsen Sea and WAIS problems is worthy objective because: 1) A variety of sample preparation, geochemical methods, and scientific best-practices can be imparted, while educating students about Antarctica’s geological configuration and role in the Earth climate system. 2) Individual projects that are narrowly defined can readily scaffold into collaborative science at the time of data synthesis and interpretation. 3) There is a high likelihood of scientific discovery that contributes to grant objectives. 4) Enrolled students will experience ambiguity and instrumentation setbacks alongside their faculty and instructors, and will likely have an opportunity to withstand/overcome challenges in a manner that trains students in complex problem solving and imparts resilience (St John et al., 2019). Based on our experiences, we consider CUREs as a means to create more inclusive and equitable spaces for learning to do research, and a basis for a broadening future WAIS community. Our groups have yet to assess student learning gains and STEM entry in a robust way, but we can report that two presenters at WAIS 2022 came from our 2021 CURE, and four polar science graduate researchers gained experience via CURE teaching. Data obtained by CURE students is contributing to our NSF projects’ aims to obtain isotope, age, and petrogenetic criteria with bearing on the subglacial bedrock geology, tectonic and landscape evolution, and ice sheet history of MBL. Cited and recommended works: Cascella & Jez, 2018, doi: 10.1021/acs.jchemed.7b00705 Gentile et al., 2017, doi: 10.17226/24622 Shanahan et al. 2022, Shortlidge & Brownell, 2016, doi: 10.1128/jmbe.v17i3.1103 St. John et al. 2019, EOS, doi: 10.1029/2019EO127285. 
    more » « less