skip to main content


Title: Porous Anionic Co(II) Metal‐Organic Framework, with a High Density of Amino Groups, as a Superior Luminescent Sensor for Turn‐on Al(III) Detection
Abstract

Accumulation of high concentrations of Al(III) in body has a direct impact on health and therefore, the trace detection of Al(III) has been a matter for substantial concern. An anionic metal organic framework ({[Me2NH2]0.5[Co(DATRz)0.5(NH2BDC)] ⋅ xG}n;1; HDATRz=3,5‐diamino‐1,2,4‐triazole, H2NH2‐BDC=2‐amino‐1,4‐benzenedicarboxylic acid, G=guest molecule) composed of two types of secondary building units (SBU) and channels of varying sizes was synthesized by employing a rational design mixed ligand synthesis approach. Free −NH2groups on both the ligands are immobilized onto the pore surface of the MOF which acts as a superior luminescent sensor for turn‐on Al(III) detection. Furthermore, the large channels could allow the counter‐ions to pass through and get exchanged to selectively detect Al(III) in presence of other seventeen metal ions with magnificent luminescence enhancement. The observed limit of detection is as low as 17.5 ppb, which is the lowest among the MOF‐based sensors achieved so far. To make this detection approach simple, portable and economic, we demonstrate MOF filter paper test for real time naked eye observation.

 
more » « less
NSF-PAR ID:
10272114
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
27
Issue:
46
ISSN:
0947-6539
Page Range / eLocation ID:
p. 11804-11810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nitro-functionalized metal–organic frameworks (MOFs), such as Al-MIL-53-NO 2 , have been widely used in quantitative hydrogen sulfide (H 2 S) detection based on the “turn-on” effect, where fluorescence enhancements were observed upon contact with H 2 S. This was believed to be caused by the fact that the electron-withdrawing –NO 2 groups in the initial non-luminescent MOFs were reduced to electron-donating –NH 2 groups in the sensing process. However, since most H 2 S detection is conducted in a suspension system consisting of MOFs and solvents, it is still unclear whether these –NH 2 groups are on MOFs or in the liquid. Using Al-MIL-53-NO 2 as a model MOF, this work aims to answer this question. Specifically, the supernatant and undissolved particles separated from the Al-MIL-53-NO 2 suspensions after being exposed to H 2 S were analyzed systematically. The results showed that it is the free BDC-NH 2 (2-aminobenzene-1,4-dicarboxylic acid) in the solution rather than the formation of Al-MIL-53-NH 2 that really caused the fluorescence enhancement. In particular, the formed BDC-NH 2 was reduced from the shedded BDC-NO 2 (2-nitrobenzene-1,4-dicarboxylic acid) during the decomposition of Al-MIL-53-NO 2 , which was attacked by OH − in the NaHS solution. We anticipate that this work will offer new ways of tracing fluorophores for MOF-based sensing applications in aqueous systems. 
    more » « less
  2. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  3. Stoichiometric reduction reactions of two metal–organic frameworks (MOFs) by the solution reagents (M = Cr, Co) are described. The two MOFs contain clusters with Ti 8 O 8 rings: Ti 8 O 8 (OH) 4 (bdc) 6 ; bdc = terephthalate (MIL-125) and Ti 8 O 8 (OH) 4 (bdc-NH 2 ) 6 ; bdc-NH 2 = 2-aminoterephthalate (NH 2 -MIL-125). The stoichiometry of the redox reactions was probed using solution NMR methods. The extent of reduction is greatly enhanced by the presence of Na + , which is incorporated into the bulk of the material. The roughly 1 : 1 stoichiometry of electrons and cations indicates that the storage of e − in the MOF is tightly coupled to a cation within the architecture, for charge balance. 
    more » « less
  4. Abstract

    Lactic acid is a renewable and versatile chemical for food, pharmaceuticals, cosmetics, and other chemicals. Lactic acid can be produced from biomass‐derived dihydroxyacetone. However, selective and recyclable water‐tolerant acid catalysts need to be developed for the specific production of lactic acid. Here we show that the MIL‐101(Al)−NH2metal‐organic framework (MOF) is a water‐tolerant and selective solid Lewis acid catalyst for dihydroxyacetone isomerization to lactic acid. The Lewis acidic MIL‐101(Al)−NH2catalyst promoted a high lactic acid selectivity of 91 % at 96 % dihydroxyacetone conversion at 120 °C in water. The reaction proceeded by temperature and/or MIL‐101(Al)−NH2MOFs mediated dihydroxyacetone dehydration to pyruvaldehyde. Subsequently, the MIL‐101(Al)−NH2facilitated rehydration of the pyruvaldehyde to lactic acid. The Lewis acidic MIL‐101(Al)−NH2catalyst was stable and reusable four times without any decrease in catalytic performance.

     
    more » « less
  5. Abstract

    Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2evolution performance, especially for the composite 2 with a maximum H2evolution rate of 13.98 mmol g−1 h−1(turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2evolution and beyond.

     
    more » « less