skip to main content


Title: Blockchains for Government: Use Cases and Challenges
Blockchain is the technology used by developers of cryptocurrencies, like Bitcoin, to enable exchange of financial “coins” between participants in the absence of a trusted third party to ensure the transaction, such as is typically done by governments. Blockchain has evolved to become a generic approach to store and process data in a highly decentralized and secure way. In this article, we review blockchain concepts and use cases, and discuss the challenges in using them from a governmental viewpoint. We begin with reviewing the categories of blockchains, the underlying mechanisms, and why blockchains can achieve their security goals. We then review existing known governmental use cases by regions. To show both technical and deployment details of blockchain adoption, we study a few representative use cases in the domains of healthcare and energy infrastructures. Finally, the review of both technical details and use cases helps us summarize the adoption and technical challenges of blockchains.  more » « less
Award ID(s):
1919159
NSF-PAR ID:
10272154
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Digital Government: Research and Practice
Volume:
1
Issue:
3
ISSN:
2691-199X
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Darmont, J ; Novikov, B. ; Wrembel, R. (Ed.)
    Bitcoin [12] is a successful and interesting example of a global scale peer-to-peer cryptocurrency that integrates many techniques and protocols from cryptography, distributed systems, and databases. The main underlying data structure is blockchain, a scalable fully replicated structure that is shared among all participants and guarantees a consistent view of all user transactions by all participants in the system. In a blockchain, nodes agree on their shared states across a large network of untrusted participants. Although originally devised for cryptocurrencies, recent systems exploit its many unique features such as transparency, provenance, fault tolerance, and authenticity to support a wide range of distributed applications. Bitcoin and other cryptocurrencies use permissionless blockchains. In a permissionless blockchain, the network is public, and anyone can participate without a specific identity. Many other distributed applications, such as supply chain management and healthcare, are deployed on permissioned blockchains consisting of a set of known, identified nodes that still might not fully trust each other. This paper illustrates some of the main challenges and opportunities from a database perspective in the many novel and interesting application domains of blockchains. These opportunities are illustrated using various examples from recent research in both permissionless and permissioned blockchains. Two main themes unite the various examples: (1) the important role of distribution and consensus in managing large scale systems and (2) the need to tolerate malicious failures. The advent of cloud computing and large data centers shifted large scale data management infrastructures from centralized databases to distributed systems. One of the main challenges in designing distributed systems is the need for fault-tolerance. Cloud-based systems typically assume trusted infrastructures, since data centers are owned by the enterprises managing the data, and hence the design typically only assumes and tolerates crash failures. The advent of blockchain and the underlying premise that copies of the blockchain are distributed among untrusted entities has shifted the focus of fault-tolerance from tolerating crash failures to tolerating malicious failures. These interesting and challenging settings pose great opportunities for database researchers. 
    more » « less
  2. The emergence of blockchains and smart contracts have renewed interest in electrical cyber-physical systems, especially in the area of transactive energy systems. However, despite recent advances, there remain significant challenges that impede the practical adoption of blockchains in transactive energy systems, which include implementing complex market mechanisms in smart contracts, ensuring safety of the power system, and protecting residential consumers’ privacy. To address these challenges, we present TRANSAX, a blockchain-based transactive energy system that provides an efficient, safe, and privacy-preserving market built on smart contracts. Implementation and deployment of TRANSAX in a verifiably correct and efficient way is based on VeriSolid, a framework for the correct-by-construction development of smart contracts, and RIAPS, a middleware for resilient distributed power systems 
    more » « less
  3. Blockchain interoperability, which allows state transitions across different blockchain networks, is critical functionality to facilitate major blockchain adoption. Existing interoperability protocols mostly focus on atomic token exchanges between blockchains. However, as blockchains have been upgraded from passive distributed ledgers into programmable state machines (thanks to smart contracts), the scope of blockchain interoperability goes beyond just token exchanges. In this paper, we present HyperService, the first platform that delivers interoperability and programmability across heterogeneous blockchains. HyperService is powered by two innovative designs: (i) a developer-facing programming framework that allows developers to build cross-chain applications in a unified programming model; and (ii) a secure blockchain-facing cryptography protocol that provably realizes those applications on blockchains. We implement a prototype of HyperService in approximately 35,000 lines of code to demonstrate its practicality. Our experiments show that (i) HyperService imposes reasonable latency, in order of seconds, on the end-to-end execution of cross-chain applications; (ii) the HyperService platform is scalable to continuously incorporate new large-scale production blockchains. 
    more » « less
  4. Public blockchains have spurred the growing popularity of decentralized transactions and smart contracts, especially on the financial market. However, public blockchains exhibit their limitations on the transaction throughput, storage availability, and compute capacity. To avoid transaction gridlock, public blockchains impose large fees and per-block resource limits, making it difficult to accommodate the ever-growing high transaction demand. Previous research endeavors to improve the scalability and performance of blockchain through various technologies, such as side-chaining, sharding, secured off-chain computation, communication network optimizations, and efficient consensus protocols. However, these approaches have not attained a widespread adoption due to their inability in delivering a cloud-like performance, in terms of the scalability in transaction throughput, storage, and compute capacity. In this work, we determine that the major obstacle to public blockchain scalability is their underlying unstructured P2P networks. We further show that a centralized network can support the deployment of decentralized smart contracts. We propose a novel approach for achieving scalable decentralization: instead of trying to make blockchain scalable, we deliver decentralization to already scalable cloud by using an Ethereum smart contract. We introduce Blockumulus, a framework that can deploy decentralized cloud smart contract environments using a novel technique called overlay consensus. Through experiments, we demonstrate that Blockumulus is scalable in all three dimensions: computation, data storage, and transaction throughput. Besides eliminating the current code execution and storage restrictions, Blockumulus delivers a transaction latency between 2 and 5 seconds under normal load. Moreover, the stress test of our prototype reveals the ability to execute 20,000 simultaneous transactions under 26 seconds, which is on par with the average throughput of worldwide credit card transactions. 
    more » « less
  5. Power grids are undergoing major changes due to the rapid adoption of intermittent renewable energy resources and the increased availability of energy storage devices. These trends drive smart-grid operators to envision a future where peer-to-peer energy trading occurs within microgrids, leading to the development of Transactive Energy Systems. Blockchains have garnered significant interest from both academia and industry for their potential application in decentralized TES, in large part due to their high level of resilience. In this paper, we introduce a novel class of attacks against blockchain based TES, which target the gateways that connect market participants to the system. We introduce a general model of blockchain based TES and study multiple threat models and attack strategies. We also demonstrate the impact of these attacks using a testbed based on GridLAB-D and a private Ethereum network. Finally, we study how to mitigate these attack. 
    more » « less