COVID-19 has been a sustained and global crisis with a strong continual impact on daily life. Staying accurately informed about COVID-19 has been key to personal and communal safety, especially for essential workers— individuals whose jobs have required them to go into work throughout the pandemic—as their employment has exposed them to higher risks of contracting the virus. Through 14 semi-structured interviews, we explore how essential workers across industries navigated the COVID-19 information landscape to get up-to-date information in the early months of the pandemic. We find that essential workers living through a sustained crisis have a broad set of information needs. We summarize these needs in a framework that centers 1) fulfilling job requirements, 2) assessing personal risk, and 3) keeping up with crisis news coverage. Our findings also show that the sustained nature of COVID-19 crisis coverage led essential workers to experience breaking points and develop coping strategies. Additionally, we show how workplace communications may act as a mediating force in this process: lack of adequate information in the workplace caused workers to struggle with navigating a contested information landscape, while consistent updates and information exchanges at work could ease the stress of information overload. Our findings extend the crisis informatics field by providing contextual knowledge about the information needs of essential workers during a sustained crisis.
more »
« less
Mapping the Landscape of COVID-19 Crisis Visualizations
In response to COVID-19, a vast number of visualizations have been created to communicate information to the public. Information exposure in a public health crisis can impact people’s attitudes towards and responses to the crisis and risks, and ultimately the trajectory of a pandemic. As such, there is a need for work that documents, organizes, and investigates what COVID-19 visualizations have been presented to the public. We address this gap through an analysis of 668 COVID-19 visualizations. We present our findings through a conceptual framework derived from our analysis, that examines who, (uses) what data, (to communicate) what messages, in what form, under what circumstances in the context of COVID-19 crisis visualizations. We provide a set of factors to be considered within each component of the framework. We conclude with directions for future crisis visualization research.
more »
« less
- PAR ID:
- 10272363
- Date Published:
- Journal Name:
- Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. While data on human behavior in COVID-19 rich environments have been captured and publicly released, spatial components of such data are recorded in two-dimensions. Thus, the complete roles of the built and natural environment cannot be readily ascertained. This paper introduces a mechanism for the three-dimensional (3D) visualization of egress behaviors of individuals leaving a COVID-19 exposed healthcare facility in Spring 2020 in New York City. Behavioral data were extracted and projected onto a 3D aerial laser scanning point cloud of the surrounding area rendered with Potree, a readily available open-source Web Graphics Library (WebGL) point cloud viewer. The outcomes were 3D heatmap visualizations of the built environment that indicated the event locations of individuals exhibiting specific characteristics (e.g., men vs. women; public transit users vs. private vehicle users). These visualizations enabled interactive navigation through the space accessible through any modern web browser supporting WebGL. Visualizing egress behavior in this manner may highlight patterns indicative of correlations between the environment, human behavior, and transmissible diseases. Findings using such tools have the potential to identify high-exposure areas and surfaces such as doors, railings, and other physical features. Providing flexible visualization capabilities with 3D spatial context can enable analysts to quickly advise and communicate vital information across a broad range of use cases. This paper presents such an application to extract the public health information necessary to form localized responses to reduce COVID-19 infection and transmission rates in urban areas.more » « less
-
Within the ongoing disruption of the COVID-19 pandemic, technologically mediated health surveillance programs have vastly intensified and expanded to new spaces. Popular understandings of medical and health data protections came into question as a variety of institutions introduced new tools for symptom tracking, contact tracing, and the management of related data. These systems have raised complex questions about who should have access to health information, under what circumstances, and how people and institutions negotiate relationships between privacy, public safety, and care during times of crisis. In this paper, we take up the case of a large public university working to keep campus productive during COVID-19 through practices of placemaking, symptom screeners, and vaccine mandate compliance databases. Drawing on a multi-methods study including thirty-eight interviews, organizational documents, and discursive analysis, we show where and for whom administrative care infrastructures either misrecognized or torqued (Bowker and Star 1999) the care relationships that made life possible for people in the university community. We argue that an analysis of care—including the social relations that enable it and those that attempt to hegemonically define it—opens important questions for how people relate to data they produce about their bodies as well as to the institutions that manage them. Furthermore, we argue that privacy frameworks that rely on individual rights, essential categories of “sensitive information,” or the normative legitimacy of institutional practices are not equipped to reveal how people negotiate privacy and care in times of crisis.more » « less
-
null (Ed.)During COVID-19, social media has played an important role for public health agencies and government stakeholders (i.e. actors) to disseminate information regarding situations, risks, and personal protective action inhibiting disease spread. However, there have been notable insufficient, incongruent, and inconsistent communications regarding the pandemic and its risks, which was especially salient at the early stages of the outbreak. Sufficiency, congruence and consistency in health risk communication have important implications for effective health safety instruction as well as critical content interpretability and recall. It also impacts individual- and community-level responses to information. This research employs text mining techniques and dynamic network analysis to investigate the actors’ risk and crisis communication on Twitter regarding message types, communication sufficiency, timeliness, congruence, consistency and coordination. We studied 13,598 pandemic-relevant tweets posted over January to April from 67 federal and state-level agencies and stakeholders in the U.S. The study annotates 16 categories of message types, analyzes their appearances and evolutions. The research then identifies inconsistencies and incongruencies on four critical topics and examines spatial disparities, timeliness, and sufficiency across actors and message types in communicating COVID-19. The network analysis also reveals increased communication coordination over time. The findings provide unprecedented insight of Twitter COVID-19 information dissemination which may help to inform public health agencies and governmental stakeholders future risk and crisis communication strategies related to global hazards in digital environments.more » « less
-
Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages.more » « less