skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bulk and interfacial decomposition of formamidinium iodide (HC(NH 2 ) 2 I) in contact with metal oxide
The thermal stability and decomposition pathway of formamidinium iodide (FAI, HC(NH 2 ) 2 I) in contact with NiO and TiO 2 are investigated by combined experimental studies and density functional theory (DFT) calculations. Based on the decomposition temperature, we find that the stability decreases as FAI ∼ FAI + TiO 2 > FAI + NiO. Moreover, FAPbI 3 in contact with NiO and TiO 2 shows similar thermal stability behaviour to FAI. The bulk decomposition of FAI occurs via the formation of sym -triazine, and can also produce HCN, and NH 4 I at ∼280 °C, which further decomposes to NH 3 and HI above 300 °C. When FAI comes into contact with NiO, the interfacial reaction triggers decomposition at a much lower temperature (∼200 °C), resulting in the formation of NiI 2 as the solid product while releasing NH 3 and H 2 O into the gas phase; sym -triazine and HCN are observed near the FAI bulk decomposition temperature. In contrast, when FAI comes into contact with TiO 2 , the decomposition temperature is similar to bulk FAI; however, HCN is released at a lower temperature (∼260 °C) compared to sym -triazine. The difference in the degradation behavior of FAI with NiO and TiO 2 is elucidated using DFT calculations. Our results show that the interfacial reaction between the organic component of perovskite material and NiO occurs similarly for MA and FA, which thereby can induce device instability.  more » « less
Award ID(s):
1916612
PAR ID:
10272386
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Materials Advances
Volume:
1
Issue:
9
ISSN:
2633-5409
Page Range / eLocation ID:
3349 to 3357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is shown that in the formamidinium (FA) lead iodide/titania heterostructure α‐HC(NH2)2PbI3/TiO2the organic layer‐mediated interface, i.e., FAI/TiO2, can induce photovoltaic diode effect via positive bias poling. The band gap of the heterostructure is reduced to zero upon the positive poling due to combined effects of ion diffusion, rotation of organic moieties, and ferroelectric redistribution. The perovskite part in the organic layer‐mediated interface FAI/TiO2gives rise to a strong polarization of 18.69 μC cm−2, compared to that (0.89 μC cm−2) in the inorganic layer‐mediated interface PbI2/TiO2. The strong polarization of the organic layer‐mediated interface is closely related to the diode effect associated with the reordering of the ferroelectric polarization and charge distribution, as a consequence of the mobility and rotation of organic moieties in FAI/TiO2upon the positive bias poling. The latter effect also provides an explanation on why the FAPbI3‐based devices can largely reduce the scanning hysteresis in theJ–Vcurves (Yang et al.,Science2015,348, 1234) and why the organic layer‐mediated halide perovskite heterostructure is one of the most promising candidates for the fabrication of highly efficient solar cells or optoelectronic devices. 
    more » « less
  2. Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 . 
    more » « less
  3. The adsorption and decomposition of HCN on the Pd(111) and Ru(001) surfaces have been studied with reflection absorption infrared spectroscopy and density functional theory calculations. The results are compared to earlier studies of HCN adsorption on the Pt(111) and Cu(100) surfaces. In all cases the initial adsorption at low temperatures gives rise to a ν (C–H) stretch peak at ∼3300 cm −1 , which is very close to the gas phase value indicating that the triple CN bond is retained for the adsorbed molecule. When the Pd(111) surface is heated to room temperature, the HCN is converted to the aminocarbyne species, CNH 2 , which was also observed on the Pt(111) surface. DFT calculations confirm the high stability of CNH 2 on Pd(111), and suggest a bi-molecular mechanism for its formation. When HCN on Cu(100) is heated, it desorbs without reaction. In contrast, no stable intermediates are detected on Ru(001) as the surface is heated, indicating that HCN decomposes completely to atomic species. 
    more » « less
  4. Abstract The sluggish hydrogen oxidation reaction (HOR) under alkaline conditions has hindered the commercialization of hydroxide‐exchange membrane hydrogen fuel cells. A low‐cost Ni/NiO/C catalyst with abundant Ni/NiO interfacial sites was developed as a competent HOR electrocatalyst in alkaline media. Ni/NiO/C exhibits an HOR activity one order of magnitude higher than that of its parent Ni/C counterpart. Moreover, Ni/NiO/C also shows better stability and CO tolerance than commercial Pt/C in alkaline media, which renders it a very promising HOR electrocatalyst for hydrogen fuel cell applications. Density functional theory (DFT) calculations were also performed to shed light on the enhanced HOR performance of Ni/NiO/C; the DFT results indicate that both hydrogen and hydroxide achieve optimal binding energies at the Ni/NiO interface, resulting from the balanced electronic and oxophilic effects at the Ni/NiO interface. 
    more » « less
  5. In the context of CO 2 valorization, the possibility of shifting the selectivity of Ni catalysts from CO 2 methanation to reverse water gas shift reaction could be economically attractive provided that the catalyst presents sufficient activity and stability. Remarkably, the addition of sulfur (0.2–0.8% w/w) to nickel on a Ni/TiO 2 catalyst induces a complete shift in the catalyst selectivity for CO 2 hydrogenation at 340 °C from 99.7% CH 4 to 99.7% CO. At an optimal Ni/S atomic ratio of 4.5, the productivity of the catalyst reaches 40.5 mol CO 2 mol Ni −1 h −1 with a good stability. Density functional theory (DFT) calculations performed on various Ni surfaces reveal that the key descriptor of selectivity is the binding energy of the CO intermediate, which is related to the local electron density of surface Ni sites. 
    more » « less