Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 .
more »
« less
Bulk and interfacial decomposition of formamidinium iodide (HC(NH 2 ) 2 I) in contact with metal oxide
The thermal stability and decomposition pathway of formamidinium iodide (FAI, HC(NH 2 ) 2 I) in contact with NiO and TiO 2 are investigated by combined experimental studies and density functional theory (DFT) calculations. Based on the decomposition temperature, we find that the stability decreases as FAI ∼ FAI + TiO 2 > FAI + NiO. Moreover, FAPbI 3 in contact with NiO and TiO 2 shows similar thermal stability behaviour to FAI. The bulk decomposition of FAI occurs via the formation of sym -triazine, and can also produce HCN, and NH 4 I at ∼280 °C, which further decomposes to NH 3 and HI above 300 °C. When FAI comes into contact with NiO, the interfacial reaction triggers decomposition at a much lower temperature (∼200 °C), resulting in the formation of NiI 2 as the solid product while releasing NH 3 and H 2 O into the gas phase; sym -triazine and HCN are observed near the FAI bulk decomposition temperature. In contrast, when FAI comes into contact with TiO 2 , the decomposition temperature is similar to bulk FAI; however, HCN is released at a lower temperature (∼260 °C) compared to sym -triazine. The difference in the degradation behavior of FAI with NiO and TiO 2 is elucidated using DFT calculations. Our results show that the interfacial reaction between the organic component of perovskite material and NiO occurs similarly for MA and FA, which thereby can induce device instability.
more »
« less
- Award ID(s):
- 1916612
- PAR ID:
- 10272386
- Date Published:
- Journal Name:
- Materials Advances
- Volume:
- 1
- Issue:
- 9
- ISSN:
- 2633-5409
- Page Range / eLocation ID:
- 3349 to 3357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The sluggish hydrogen oxidation reaction (HOR) under alkaline conditions has hindered the commercialization of hydroxide‐exchange membrane hydrogen fuel cells. A low‐cost Ni/NiO/C catalyst with abundant Ni/NiO interfacial sites was developed as a competent HOR electrocatalyst in alkaline media. Ni/NiO/C exhibits an HOR activity one order of magnitude higher than that of its parent Ni/C counterpart. Moreover, Ni/NiO/C also shows better stability and CO tolerance than commercial Pt/C in alkaline media, which renders it a very promising HOR electrocatalyst for hydrogen fuel cell applications. Density functional theory (DFT) calculations were also performed to shed light on the enhanced HOR performance of Ni/NiO/C; the DFT results indicate that both hydrogen and hydroxide achieve optimal binding energies at the Ni/NiO interface, resulting from the balanced electronic and oxophilic effects at the Ni/NiO interface.more » « less
-
The adsorption and decomposition of HCN on the Pd(111) and Ru(001) surfaces have been studied with reflection absorption infrared spectroscopy and density functional theory calculations. The results are compared to earlier studies of HCN adsorption on the Pt(111) and Cu(100) surfaces. In all cases the initial adsorption at low temperatures gives rise to a ν (C–H) stretch peak at ∼3300 cm −1 , which is very close to the gas phase value indicating that the triple CN bond is retained for the adsorbed molecule. When the Pd(111) surface is heated to room temperature, the HCN is converted to the aminocarbyne species, CNH 2 , which was also observed on the Pt(111) surface. DFT calculations confirm the high stability of CNH 2 on Pd(111), and suggest a bi-molecular mechanism for its formation. When HCN on Cu(100) is heated, it desorbs without reaction. In contrast, no stable intermediates are detected on Ru(001) as the surface is heated, indicating that HCN decomposes completely to atomic species.more » « less
-
Despite the broad catalytic relevance of metal–support interfaces, controlling their chemical nature, the interfacial contact perimeter (exposed to reactants), and consequently, their contributions to overall catalytic reactivity, remains challenging, as the nanoparticle and support characteristics are interdependent when catalysts are prepared by impregnation. Here, we decoupled both characteristics by using a raspberry-colloid-templating strategy that yields partially embedded PdAu nanoparticles within well-defined SiO2or TiO2supports, thereby increasing the metal–support interfacial contact compared to nonembedded catalysts that we prepared by attaching the same nanoparticles onto support surfaces. Between nonembedded PdAu/SiO2and PdAu/TiO2, we identified a support effect resulting in a 1.4-fold higher activity of PdAu/TiO2than PdAu/SiO2for benzaldehyde hydrogenation. Notably, partial nanoparticle embedding in the TiO2raspberry-colloid-templated support increased the metal–support interfacial perimeter and consequently, the number of Au/TiO2interfacial sites by 5.4-fold, which further enhanced the activity of PdAu/TiO2by an additional 4.1-fold. Theoretical calculations and in situ surface-sensitive desorption analyses reveal facile benzaldehyde binding at the Au/TiO2interface and at Pd ensembles on the nanoparticle surface, explaining the connection between the number of Au/TiO2interfacial sites (via the metal–support interfacial perimeter) and catalytic activity. Our results demonstrate partial nanoparticle embedding as a synthetic strategy to produce thermocatalytically stable catalysts and increase the number of catalytically active Au/TiO2interfacial sites to augment catalytic contributions arising from metal–support interfaces.more » « less
-
In the context of CO 2 valorization, the possibility of shifting the selectivity of Ni catalysts from CO 2 methanation to reverse water gas shift reaction could be economically attractive provided that the catalyst presents sufficient activity and stability. Remarkably, the addition of sulfur (0.2–0.8% w/w) to nickel on a Ni/TiO 2 catalyst induces a complete shift in the catalyst selectivity for CO 2 hydrogenation at 340 °C from 99.7% CH 4 to 99.7% CO. At an optimal Ni/S atomic ratio of 4.5, the productivity of the catalyst reaches 40.5 mol CO 2 mol Ni −1 h −1 with a good stability. Density functional theory (DFT) calculations performed on various Ni surfaces reveal that the key descriptor of selectivity is the binding energy of the CO intermediate, which is related to the local electron density of surface Ni sites.more » « less
An official website of the United States government

