skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybridizing physical and data-driven prediction methods for physicochemical properties
We present a generic way to hybridize physical and data-driven methods for predicting physicochemical properties. The approach ‘distills’ the physical method's predictions into a prior model and combines it with sparse experimental data using Bayesian inference. We apply the new approach to predict activity coefficients at infinite dilution and obtain significant improvements compared to the physical and data-driven baselines and established ensemble methods from the machine learning literature.  more » « less
Award ID(s):
2007719 2003237
PAR ID:
10272508
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
82
ISSN:
1359-7345
Page Range / eLocation ID:
12407 to 12410
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present hybrid data-driven approach to model multi-physical process in fluid-infiltrating porous media across length scales. Unlike single-physical problems where data-driven model is often used as a replacement of the solid constitutive law, a hydro-mechanical problem often leads to more complex hierarchical relations among physical quantities which in return complicate the design of the data-driven solver. When artificial neural network is used, additional issues may arise when constraints and rules, such as material frame indifference, cannot be explicitly enforced without artificially expanding the training dataset. In this work, we introduce a component-based strategy in which a multiphysical problem is viewed as a directed graph, a network consisting of inter-connected vertices representing physical quantities. This strategy enables modelers to couple data-driven model with conventional math-ematical expression methods by considering different hierarchical relations among data. Depending on the availability of data, hybridization of data-driven and mathematical models may take different forms. To enforce material frame indifference efficiently, we employ spectral decomposition to handle the invariant and spin terms via Lie algebra. 
    more » « less
  2. Abstract Machine learning offers an intriguing alternative to first-principle analysis for discovering new physics from experimental data. However, to date, purely data-driven methods have only proven successful in uncovering physical laws describing simple, low-dimensional systems with low levels of noise. Here we demonstrate that combining a data-driven methodology with some general physical principles enables discovery of a quantitatively accurate model of a non-equilibrium spatially extended system from high-dimensional data that is both noisy and incomplete. We illustrate this using an experimental weakly turbulent fluid flow where only the velocity field is accessible. We also show that this hybrid approach allows reconstruction of the inaccessible variables – the pressure and forcing field driving the flow. 
    more » « less
  3. Data-driven methods have attracted increasingly more attention in materials research since the advent of the material genome initiative. The combination of materials science with computer science, statistics, and data-driven methods aims to expediate materials research and applications and can utilize both new and archived research data. In this paper, we present a data driven and deep learning approach that builds a portion of the structure–property relationship for polymer nanocomposites. Analysis of archived experimental data motivates development of a computational model which allows demonstration of the approach and gives flexibility to sufficiently explore a wide range of structures. Taking advantage of microstructure reconstruction methods and finite element simulations, we first explore qualitative relationships between microstructure descriptors and mechanical properties, resulting in new findings regarding the interplay of interphase, volume fraction and dispersion. Then we present a novel deep learning approach that combines convolutional neural networks with multi-task learning for building quantitative correlations between microstructures and property values. The performance of the model is compared with other state-of-the-art strategies including two-point statistics and structure descriptor-based approaches. Lastly, the interpretation of the deep learning model is investigated to show that the model is able to capture physical understandings while learning. 
    more » « less
  4. null (Ed.)
    Simulating physical systems is a core component of scientific computing, encompassing a wide range of physical domains and applications. Recently, there has been a surge in data-driven methods to complement traditional numerical simulations methods, motivated by the opportunity to reduce computational costs and/or learn new physical models leveraging access to large collections of data. However, the diversity of problem settings and applications has led to a plethora of approaches, each one evaluated on a different setup and with different evaluation metrics. We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols. We propose four representative physical systems, as well as a collection of both widely used classical time integrators and representative data-driven methods (kernel-based, MLP, CNN, Nearest-Neighbors). Our framework allows to evaluate objectively and systematically the stability, accuracy, and computational efficiency of data-driven methods. Additionally, it is configurable to permit adjustments for accommodating other learning tasks and for establishing a foundation for future developments in machine learning for scientific computing. 
    more » « less
  5. Simulating physical systems is a core component of scientific computing, encompassing a wide range of physical domains and applications. Recently, there has been a surge in data-driven methods to complement traditional numerical simulations methods, motivated by the opportunity to reduce computational costs and/or learn new physical models leveraging access to large collections of data. However, the diversity of problem settings and applications has led to a plethora of approaches, each one evaluated on a different setup and with different evaluation metrics. We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols. We propose four representative physical systems, as well as a collection of both widely used classical time integrators and representative data-driven methods (kernel-based, MLP, CNN, nearest neighbors). Our framework allows evaluating objectively and systematically the stability, accuracy, and computational efficiency of data-driven methods. Additionally, it is configurable to permit adjustments for accommodating other learning tasks and for establishing a foundation for future developments in machine learning for scientific computing. 
    more » « less