skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LHC signals for KK graviton from an extended warped extra dimension
A bstract We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of “extended” warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a ∼ O (10) TeV (new, “intermediate”) brane, whereas the SM gauge fields (and gravity) propagate further down to the ∼ O (TeV) infrared brane. Such a framework suppresses flavor violation stemming from KK particle effects, while keeping the KK gauge bosons and gravitons accessible to the LHC. We find that the signals from KK graviton are significantly different than in the standard warped model. This is because the usually dominant decay modes of KK gravitons into top quark, Higgs and longitudinal W/Z particles are suppressed by the above spatial separation between these two sets of particles, thus other decay channels are allowed to shine themselves. In particular, we focus on two novel decay channels of the KK graviton. The first one is the decay into a pair of radions, each of which decays (dominantly) into a pair of SM gluons, resulting in a resonant 4-jet final state consisting of two pairs of dijet resonance. On the other hand, if the radion is heavier and/or KK gluon is lighter, then the KK graviton mostly decays into a KK gluon and a SM gluon. The resulting KK gluon has a significant decay branching fraction into radion and SM gluon, thereby generating (again) a 4-jet signature, but with a different underlying event topology, i.e., featuring now three different resonances. We demonstrate that the High-Luminosity LHC (HL-LHC) has sensitivity to KK graviton of (up to) ∼ 4 TeV in both channels, in the specific model with only gluon field (and gravity) propagating in the extended bulk, whereas it is unlikely to have sensitivity in the standard dijet resonance search channel from KK graviton decay into two gluons.  more » « less
Award ID(s):
1914731
PAR ID:
10272749
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract A search for new heavy resonances decaying to a pair of Higgs bosons (HH) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC in 2016–2018, corresponding to an integrated luminosity of 138 fb − 1 . Resonances with a mass between 0.8 and 4.5 TeV are considered using events in which one Higgs boson decays into a bottom quark pair and the other into final states with either one or two charged leptons. Specifically, the single-lepton decay channel $$ \mathrm{HH}\to \mathrm{b}\overline{\mathrm{b}}{\mathrm{WW}}^{\ast}\to \mathrm{b}\overline{\mathrm{b}}\ell v\mathrm{q}{\overline{\mathrm{q}}}^{\prime } $$ HH → b b ¯ WW ∗ → b b ¯ ℓ v q q ¯ ′ and the dilepton decay channels $$ \mathrm{HH}\to \mathrm{b}\overline{\mathrm{b}}{\mathrm{WW}}^{\ast}\to \mathrm{b}\overline{\mathrm{b}}\ell v\ell v $$ HH → b b ¯ WW ∗ → b b ¯ ℓ v ℓ v and $$ \mathrm{HH}\to \mathrm{b}\overline{\mathrm{b}}\uptau \uptau \to \mathrm{b}\overline{\mathrm{b}}\ell vv\ell vv $$ HH → b b ¯ ττ → b b ¯ ℓ vv ℓ vv are examined, where ℓ in the final state corresponds to an electron or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the $$ \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} $$ H → b b ¯ jet mass and HH invariant mass distributions. No significant excess above the standard model expectation is observed in data. Model-independent exclusion limits are placed on the product of the cross section and branching fraction for narrow spin-0 and spin-2 massive bosons decaying to HH. The results are also interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. The results provide the most stringent limits to date for X → HH signatures with final-state leptons and at some masses provide the most sensitive limits of all X → HH searches. 
    more » « less
  2. A<sc>bstract</sc> We present next-to-leading order perturbative QCD predictions for four-jet-like event-shape observables in hadronic Higgs decays. To this end, we take into account two Higgs-decay categories: involving either the Yukawa-induced decay to a$${\text{b}}\overline{{\text{b}} }$$pair or the loop-induced decay to two gluons via an effective Higgs-gluon-gluon coupling. We present results for distributions related to the event-shape variables thrust minor, light-hemisphere mass, narrow jet broadening,D-parameter, and Durham four-to-three-jet transition variable. For each of these observables we study the impact of higher-order corrections and compare their size and shape in the two Higgs-decay categories. We find large NLO corrections with a visible shape difference between the two decay modes, leading to a significant shift of the peak in distributions related to the H→gg decay mode. 
    more » « less
  3. A bstract Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb − 1 . Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1 . 12±0 . 09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations. 
    more » « less
  4. null (Ed.)
    A bstract A superpotential deformation that is cubic in one of the chiral superfields of ABJM makes the latter theory flow into a new $$ \mathcal{N} $$ N = 2 superconformal phase. This is holographically dual to a warped AdS 4 × w S 7 solution of M-theory equipped with a squashed and stretched metric on S 7 . We determine the spectrum of spin-2 operators of the cubic deformation at low energies by computing the spectrum of Kaluza-Klein (KK) gravitons over the dual AdS 4 solution. We calculate, numerically, the complete graviton spectrum and, analytically, the spectrum of gravitons that belong to short multiplets. We also use group theory to assess the structure of the full KK spectrum, and conclude that $$ \mathcal{N} $$ N = 2 supermultiplets cannot be allocated KK level by KK level. This phenomenon, usually referred to as “space invaders scenario”, is also known to occur for another AdS 4 solution based on a different squashed S 7 . 
    more » « less
  5. A bstract A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb − 1 . No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements. 
    more » « less