skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Limits on Kaluza-Klein portal dark matter models
We revisit the phenomenology of dark matter (DM) scenarios within radius-stabilized Randall-Sundrum models. Specifically, we consider models where the dark matter candidates are Standard Model (SM) singlets confined to the TeV-brane and interact with the SM via spin-2 and spin-0 gravitational Kaluza-Klein (KK) modes. We compute the thermal relic density of DM particles in these models by applying recent work showing that scattering amplitudes of massive spin-2 KK states involve an intricate cancellation between various diagrams. Considering the resulting DM abundance, collider searches, and the absence of a signal in direct DM detection experiments, we show that spin-2 KK portal DM models are highly constrained. In particular, we confirm that within the usual thermal freeze-out scenario, scalar dark matter models are essentially ruled out. In contrast, we show that fermion and vector dark matter models are viable in a region of parameter space in which dark matter annihilation through a KK graviton is resonant. Specifically, vector models are viable for dark matter masses ranging from 1.1 to 5.5 TeV for theories in which the scale of couplings of the KK modes is of order 40 TeV or lower. Fermion dark matter models are viable for a similar mass region, but only for KK coupling scales of order 20 TeV. In this work, we provide a complete description of the calculations needed to arrive at these results and, provide a discussion of new KK-graviton couplings needed for the computations, which have not previously been discussed in the literature. Here, we focus on models in which the radion is light, and the backreaction of the radion stabilization dynamics on the gravitational background can be neglected. The phenomenology of a model with a heavy radion and the consideration of the effects of the radion stabilization dynamics on the DM abundance will be addressed in forthcoming work. Published by the American Physical Society2025  more » « less
Award ID(s):
2310497 2210177
PAR ID:
10611465
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
7
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the influence of the reheating temperature of the visible sector on the freeze-in dark matter (DM) benchmark model for direct detection experiments, where DM production is mediated by an ultralight dark photon. Here, we consider a new regime for this benchmark: we take the initial temperature of the thermal Standard Model (SM) bath to be below the DM mass. The production rate from the SM bath is drastically reduced due to Boltzmann suppression, necessitating a significant increase in the portal coupling between DM and the SM to match the observed relic DM abundance. This enhancement in coupling strength increases the predicted DM-electron scattering cross section, making freeze-in DM more accessible to current direct detection experiments. Published by the American Physical Society2025 
    more » « less
  2. null (Ed.)
    A bstract We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of “extended” warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a ∼ O (10) TeV (new, “intermediate”) brane, whereas the SM gauge fields (and gravity) propagate further down to the ∼ O (TeV) infrared brane. Such a framework suppresses flavor violation stemming from KK particle effects, while keeping the KK gauge bosons and gravitons accessible to the LHC. We find that the signals from KK graviton are significantly different than in the standard warped model. This is because the usually dominant decay modes of KK gravitons into top quark, Higgs and longitudinal W/Z particles are suppressed by the above spatial separation between these two sets of particles, thus other decay channels are allowed to shine themselves. In particular, we focus on two novel decay channels of the KK graviton. The first one is the decay into a pair of radions, each of which decays (dominantly) into a pair of SM gluons, resulting in a resonant 4-jet final state consisting of two pairs of dijet resonance. On the other hand, if the radion is heavier and/or KK gluon is lighter, then the KK graviton mostly decays into a KK gluon and a SM gluon. The resulting KK gluon has a significant decay branching fraction into radion and SM gluon, thereby generating (again) a 4-jet signature, but with a different underlying event topology, i.e., featuring now three different resonances. We demonstrate that the High-Luminosity LHC (HL-LHC) has sensitivity to KK graviton of (up to) ∼ 4 TeV in both channels, in the specific model with only gluon field (and gravity) propagating in the extended bulk, whereas it is unlikely to have sensitivity in the standard dijet resonance search channel from KK graviton decay into two gluons. 
    more » « less
  3. Leptophilic sub-MeV spin-zero dark matter (DM) decays into photons via one-loop processes, a scenario that has been in part overlooked in current literature. In this work, we provide updated and comprehensive upper limits on scalar, pseudoscalar, and axionlike DM-electron couplings based on the latest cosmic microwave background data from . Our bounds on the couplings are not only competitive with astrophysical and terrestrial experiments, but outperform them in certain regions of parameter space. Notably, we present the most stringent limits to date on scalar DM with masses around a few keV and pseudoscalar DM with masses between 100 eV and a few keV. Additionally, we explore, for the first time, the impact of implementing a cosmology-consistent treatment of energy deposition into the cosmic medium. Published by the American Physical Society2025 
    more » « less
  4. We reexamine a dynamical dark matter model with Kaluza-Klein (KK) towers of gravitons and neutrinos fitting together in the dark dimension. We show that even though gravitational decays of neutrino KK towers have little impact in cosmology, the weak decay channel could have significant cosmological effects. Taking conservative upper bounds on the dark matter decay rate into two photons before reionization and on the number of effective extra neutrino species Δ N eff , we derive constraints on the conversion rate from active to sterile species despite the dependence of the mixing angle on the KK mode mass. We also provide counterarguments to a recent claim suggesting that the bounds on Δ N eff rule out micron-sized extra dimensions. Published by the American Physical Society2025 
    more » « less
  5. It has long been recognized that the scattering of electroweak particles at very high energies is dominated by vector boson fusion, which probes the origin of electroweak symmetry breaking and offers a unique window into the ultraviolet regime of the Standard Model (SM). Previous studies assume SM-like couplings and rely on the effective W approximation (or electroweak parton distribution), whose validity is well established within the SM but not yet studied in the presence of anomalous Higgs couplings. In this work, we critically examine the electroweak production of two Higgs bosons in the presence of anomalous V V h and V V h h couplings. We compute the corresponding helicity amplitudes and compare the cross section results in the effective W approximation with the full fixed-order calculation. In particular, we identify two distinct classes of anomalous Higgs couplings, whose effects are not captured by vector boson fusion and effective W approximation. Such very-high-energy electroweak scatterings can be probed at the muon shot, a multi-TeV muon collider upon which we base our study, although similar considerations apply to other high-energy colliders. Published by the American Physical Society2024 
    more » « less