Abstract Additive manufacturing (AM) enables the tailored production of precision fibrous scaffolds toward various engineered tissue models. Moreover, by functionalizing scaffolds in either a uniform or gradient pattern of biomolecules, different target tissues can be fabricated in vitro to capture key characteristics of in vivo cellular microenvironments. However, current engineered tissue models lack the appropriate cellular cues that are needed to deterministically direct cell behavior. Specifically, tunable and reproducible scaffold‐guided stimuli are identified herein as the missing link between biomaterial structure and cellular behavior. Therefore, the bottleneck of precision control is addressed here over the immobilization of patterned biomolecular stimuli with either uniform or gradient distribution over the AM‐enabled 3D biomaterial model as a function of different growth factors exposure variables, protocols, and various scaffold architectural design parameters. The produced study outcomes herein will improve the directing and guiding of biological cell attachment and growth direction in the context of scaffold‐guided stimuli techniques. Therefore, unprecedented control is presented here over 3D structured biomaterial gradient functionalization and immobilization of biomolecules toward biomimetic tissue architectures.
more »
« less
Gradient scaffolds for osteochondral tissue engineering and regeneration
The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue ( e.g. , the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient ( e.g. , a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold–bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed.
more »
« less
- Award ID(s):
- 2037636
- PAR ID:
- 10272754
- Date Published:
- Journal Name:
- Journal of Materials Chemistry B
- Volume:
- 8
- Issue:
- 36
- ISSN:
- 2050-750X
- Page Range / eLocation ID:
- 8149 to 8170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D‐bioplotted osteochondral scaffold design that can drive site‐specific tissue formation when seeded with adipose‐derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and compared to both open lesions and autologous explants. ICRS II evaluation indicated that defects with ASC‐seeded scaffolds had healing that most closely resembled the aulogous explant. Scaffold‐facilitated subchondral bone repair mimicked the structure of native bone tissue, but cartilage matrix staining was not apparent within the scaffold. The open lesions had the highest volumetric infill detected using CT analysis (p < 0.05), but the repair tissue was largely disorganized. The acellular scaffold without a tidemark had significantly more volumetric filling than either the acellular or ASC seeded groups containing a tidemark (p < 0.05), suggesting that the tidemark limited cell infiltration into the cartilage portion of the scaffold. Overall, scaffold groups repaired the defect more successfully than an open lesion but achieved limited repair in the cartilage region. With further optimization, this approach holds potential to treat focal cartilage lesions in a highly personalized manner using a human patient's own ASC cells.more » « less
-
Functional repair of osteochondral (OC) tissue remains challenging because the transition from bone to cartilage presents gradients in biochemical and physical properties necessary for joint function. Osteochondral regeneration requires strategies that restore the spatial composition and organization found in the native tissue. Several biomaterial approaches have been developed to guide chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). These strategies can be combined with 3D printing, which has emerged as a useful tool to produce tunable, continuous scaffolds functionalized with bioactive cues. However, functionalization often includes one or more post-fabrication processing steps, which can lead to unwanted side effects and often produce biomaterials with homogeneously distributed chemistries. To address these challenges, surface functionalization can be achieved in a single step by solvent-cast 3D printing peptide-functionalized polymers. Peptide-poly(caprolactone) (PCL) conjugates were synthesized bearing hyaluronic acid (HA)-binding (HAbind–PCL) or mineralizing (E3–PCL) peptides, which have been shown to promote hMSC chondrogenesis or osteogenesis, respectively. This 3D printing strategy enables unprecedented control of surface peptide presentation and spatial organization within a continuous construct. Scaffolds presenting both cartilage-promoting and bone-promoting peptides had a synergistic effect that enhanced hMSC chondrogenic and osteogenic differentiation in the absence of differentiation factors compared to scaffolds without peptides or only one peptide. Furthermore, multi-peptide organization significantly influenced hMSC response. Scaffolds presenting HAbind and E3 peptides in discrete opposing zones promoted hMSC osteogenic behavior. In contrast, presenting both peptides homogeneously throughout the scaffolds drove hMSC differentiation towards a mixed population of articular and hypertrophic chondrocytes. These significant results indicated that hMSC behavior was driven by dual-peptide presentation and organization. The downstream potential of this platform is the ability to fabricate biomaterials with spatially controlled biochemical cues to guide functional tissue regeneration without the need for differentiation factors.more » « less
-
Mears, Laine (Ed.)Globally, around 2.2 million bone graft procedures are performed annually, with costs reaching approximately $664 million as of 2021. The number of surgeries to repair bone defects is projected to increase by about 13 % each year. However, traditional bone grafts often carry risks such as donor site morbidity and limited availability, driving the need for innovative solutions. This study explores the fabrication of biodegradable bone tissue scaffolds inspired by the nuclear pasta theory using extrusion-based Fused Deposition Modeling (FDM). The nuclear pasta theory, which describes complex geometrical formations within neutron stars, serves as a novel source of inspiration for designing scaffolds with enhanced mechanical properties and optimized porosity. Two bio-based, biodegradable polymers, Luminy LX175 and ecoPLAS, were used to fabricate scaffolds via an in-house filament extrusion process utilizing the Filabot EX6 system. The extrusion parameters were optimized to achieve a consistent filament diameter of 1.75 mm suitable for 3D printing on a Creality K1C printer. Seven scaffold designs were developed, including five based on Triply Periodic Minimal Surfaces (TPMS) and two inspired by nuclear pasta configurations, namely “lasagna” and a hybrid “lasagna-spaghetti” structure. The scaffolds were evaluated for their mechanical properties using uniaxial compression testing. Results showed that TPMS-inspired designs generally achieved a favorable balance between porosity and mechanical strength, while the nuclear pasta-inspired designs exhibited unique anisotropic and isotropic compression characteristics. The study concluded that nuclear pasta-inspired scaffold architectures exhibit unique mechanical properties and porosity characteristics, emphasizing their potential for future optimization in bone tissue engineering applications. Additionally, these structures can be further reinforced through material modifications or hybrid scaffold designs to enhance their load-bearing capabilities. This work demonstrates the potential of using bio-inspired designs in conjunction with sustainable, biodegradable materials for bone tissue engineering. Future research will focus on optimizing co-extrusion techniques and exploring composite materials to further enhance scaffold properties for clinical applications.more » « less
-
This study investigates bioelectric stimulation’s role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C. Scanning Electron Microscopy (SEM) showed that 140°C annealed scaffolds had enhanced lamellar structures, increased porosity, and maximum piezoelectric response. Mechanical tests indicated that 140°C annealing improved elastic modulus, tensile strength, and substrate stiffness, aligning these properties with physiological soft tissues. In vitro assessments in Schwann cells demonstrated favorable responses, with increased cell proliferation, contraction, and extracellular matrix attachment. Additionally, genes linked to extracellular matrix production, vascularization, and calcium signaling were upregulated. The foreign body response in C57BL/6 mice, evaluated through Hematoxylin and Eosin (H&E) and Picrosirius Red staining, showed no differences between scaffold groups, supporting the potential for future functional evaluation of the annealed group in tissue repair.more » « less
An official website of the United States government

