skip to main content


Title: Gradient scaffolds for osteochondral tissue engineering and regeneration
The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue ( e.g. , the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient ( e.g. , a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold–bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed.  more » « less
Award ID(s):
2037636
NSF-PAR ID:
10272754
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Materials Chemistry B
Volume:
8
Issue:
36
ISSN:
2050-750X
Page Range / eLocation ID:
8149 to 8170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Functional repair of osteochondral (OC) tissue remains challenging because the transition from bone to cartilage presents gradients in biochemical and physical properties necessary for joint function. Osteochondral regeneration requires strategies that restore the spatial composition and organization found in the native tissue. Several biomaterial approaches have been developed to guide chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). These strategies can be combined with 3D printing, which has emerged as a useful tool to produce tunable, continuous scaffolds functionalized with bioactive cues. However, functionalization often includes one or more post-fabrication processing steps, which can lead to unwanted side effects and often produce biomaterials with homogeneously distributed chemistries. To address these challenges, surface functionalization can be achieved in a single step by solvent-cast 3D printing peptide-functionalized polymers. Peptide-poly(caprolactone) (PCL) conjugates were synthesized bearing hyaluronic acid (HA)-binding (HAbind–PCL) or mineralizing (E3–PCL) peptides, which have been shown to promote hMSC chondrogenesis or osteogenesis, respectively. This 3D printing strategy enables unprecedented control of surface peptide presentation and spatial organization within a continuous construct. Scaffolds presenting both cartilage-promoting and bone-promoting peptides had a synergistic effect that enhanced hMSC chondrogenic and osteogenic differentiation in the absence of differentiation factors compared to scaffolds without peptides or only one peptide. Furthermore, multi-peptide organization significantly influenced hMSC response. Scaffolds presenting HAbind and E3 peptides in discrete opposing zones promoted hMSC osteogenic behavior. In contrast, presenting both peptides homogeneously throughout the scaffolds drove hMSC differentiation towards a mixed population of articular and hypertrophic chondrocytes. These significant results indicated that hMSC behavior was driven by dual-peptide presentation and organization. The downstream potential of this platform is the ability to fabricate biomaterials with spatially controlled biochemical cues to guide functional tissue regeneration without the need for differentiation factors. 
    more » « less
  2. The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery. 
    more » « less
  3. Abstract

    There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D‐bioplotted osteochondral scaffold design that can drive site‐specific tissue formation when seeded with adipose‐derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and compared to both open lesions and autologous explants. ICRS II evaluation indicated that defects with ASC‐seeded scaffolds had healing that most closely resembled the aulogous explant. Scaffold‐facilitated subchondral bone repair mimicked the structure of native bone tissue, but cartilage matrix staining was not apparent within the scaffold. The open lesions had the highest volumetric infill detected using CT analysis (p < 0.05), but the repair tissue was largely disorganized. The acellular scaffold without a tidemark had significantly more volumetric filling than either the acellular or ASC seeded groups containing a tidemark (p < 0.05), suggesting that the tidemark limited cell infiltration into the cartilage portion of the scaffold. Overall, scaffold groups repaired the defect more successfully than an open lesion but achieved limited repair in the cartilage region. With further optimization, this approach holds potential to treat focal cartilage lesions in a highly personalized manner using a human patient's own ASC cells.

     
    more » « less
  4. Abstract

    To regenerate functional muscle tissue, engineered scaffolds should impart topographical features to induce myoblast alignment by a phenomenon known as contact guidance. Myoblast alignment is an essential step towards myotube formation, which is guidedin vivoby extracellular matrix structure and micron‐scale grooves between adjacent muscle fibers. Fibrin microthread scaffolds mimic the morphological architecture of native muscle tissue and have demonstrated promise as an implantable scaffold for treating skeletal muscle injuries. While these scaffolds promote modest myoblast alignment, it is not sufficient to generate highly functional muscle tissue. The goal of this study is to develop and characterize a new method of etching the surface of fibrin microthreads to incorporate aligned, sub‐micron grooves that promote myoblast alignment. To generate these topographic features, we placed fibrin microthreads into 2‐(N‐morpholino)ethane‐sulfonic acid (MES) acidic buffer and evaluated the effect of buffer pH on the generation of these features. Surface characterization with atomic force microscopy and scanning electron microscopy indicated the generation of aligned, sub‐micron sized grooves on microthreads in MES buffer with pH 5.0. Microthreads etched with surface features had tensile mechanical properties comparable to controls, indicating that the surface treatment does not inhibit scaffold bulk properties. Our data demonstrate that etching threads in MES buffer with pH 5.0 enhanced alignment and filamentous actin stress fiber organization of myoblasts on the surface of scaffolds. The ability to tune topographic features on the surfaces of scaffolds independent of mechanical properties provides a valuable tool for designing microthread‐based scaffolds to enhance regeneration of functional muscle tissue.

     
    more » « less
  5. Abstract

    Cartilage is difficult to self‐repair and it is more challenging to repair an osteochondral defects concerning both cartilage and subchondral bone. Herein, it is hypothesized that a bilayered porous scaffold composed of a biomimetic gelatin hydrogel may, despite no external seeding cells, induce osteochondral regeneration in vivo after being implanted into mammal joints. This idea is confirmed based on the successful continuous 3D‐printing of the bilayered scaffolds combined with the sol‐gel transition of the aqueous solution of a gelatin derivative (physical gelation) and photocrosslinking of the gelatin methacryloyl (gelMA) macromonomers (chemical gelation). At the direct printing step, a nascent physical hydrogel is extruded, taking advantage of non‐Newtonian and thermoresponsive rheological properties of this 3D‐printing ink. In particular, a series of crosslinked gelMA (GelMA) and GelMA‐hydroxyapatite bilayered hydrogel scaffolds are fabricated to evaluate the influence of the spacing of 3D‐printed filaments on osteochondral regeneration in a rabbit model. The moderately spaced scaffolds output excellent regeneration of cartilage with cartilaginous lacunae and formation of subchondral bone. Thus, tricky rheological behaviors of soft matter can be employed to improve 3D‐printing, and the bilayered hybrid scaffold resulting from the continuous 3D‐printing is promising as a biomaterial to regenerate articular cartilage.

     
    more » « less