skip to main content


Title: Development and status of MAPS, the MMT AO exoPlanet characterization system
We are upgrading and refurbishing the first-generation adaptive-secondary mirror (ASM)-based AO system on the 6.5-m MMT in Arizona, in an NSF MSIP-funded program that will create a unique facility specialized for exoplanet characterization. This update includes a third-generation ASM with embedded electronics for low power consumption, two pyramid wavefront sensors (optical and near-IR), and an upgraded ARIES science camera for high-resolution spectroscopy (HRS) from 1-5 μm and MMT-POL science camera for sensitive polarization mapping. Digital electronics have been incorporated into each of the 336 actuators, simplifying hub-level electronics and reducing the total power to 300 W, down from 1800 W in the legacy system — reducing cooling requirements from active coolant to passive ambient cooling. An improved internal control law allows for electronic damping and a faster response. The dual pyramid wavefront sensors allow for a choice between optical or IR wavefront sensing depending on guide star magnitude, color, and extinction. The HRS upgrade to ARIES enables crosscorrelation of molecular templates to extract atmospheric parameters of exoplanets. The combination of these upgrades creates a workhorse instrument for exoplanet characterization via AO and HRS to separate planets from their host stars, with broad wavelength coverage and polarization to probe a range of molecular species in exoplanet atmospheres.  more » « less
Award ID(s):
1836008
NSF-PAR ID:
10272755
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Editor(s):
Schmidt, Dirk; Schreiber, Laura; Vernet, Elise
Date Published:
Journal Name:
Proceedings of the SPIE
Volume:
11448
Page Range / eLocation ID:
114481L
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    The MMTO Adaptive optics exoPlanet characterization System (MAPS) is an ongoing upgrade to the 6.5-meter MMT Observatory on Mount Hopkins in Arizona. MAPS includes an upgraded adaptive secondary mirror (ASM), upgrades to the ARIES spectrograph, and a new AO system containing both an optical and near-infrared (NIR; 0.9-1.8 μm) pyramid wavefront sensor (PyWFS). The NIR PyWFS will utilize an IR-optimized double pyramid coupled with a SAPHIRA detector: a low-read noise electron Avalanche Photodiode (eAPD) array. This NIR PyWFS will improve MAPS's sky coverage by an order of magnitude by allowing redder guide stars (e.g. K & M-dwarfs or highly obscured stars in the Galactic plane) to be used. To date, the custom designed cryogenic SAPHIRA camera has been fully characterized and can reach sub-electron read noise at high avalanche gain. In order to test the performance of the camera in a closed-loop environment prior to delivery to the observatory, an AO testbed was designed and constructed. In addition to testing the SAPHIRA's performance, the testbed will be used to test and further develop the proposed on-sky calibration procedure for MMTO's ASM. We will report on the anticipated performance improvements from our NIR PyWFS, the SAPHIRA's closed-loop performance on our testbed, and the status of our ASM calibration procedure. 
    more » « less
  2. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    The MMT Adaptive optics exoPlanet characterization System (MAPS) is a broad overhaul and upgrade of AO instrumentation at the 6.5-m MMT observatory, from deformable secondary mirror, through pyramid wavefront sensors in both the visible and near-infrared, to improved science cameras. MAPS is an NSF MSIP-funded program whose ultimate goal is a facility optimized for exoplanet characterization. Here we describe the laboratory testing and calibration of one MAPS component: the refurbished MMT adaptive secondary mirror (ASM). The new ASM includes a complete redesign of electronics and actuators, including simplified hub-level electronics and digital electronics incorporated into the actuators themselves. The redesign reduces total power to <~300W, from the original system's 1800W, which in turn allows us to eliminate liquid cooling at the hub with no loss of performance. We present testing strategies, results, and lessons learned from laboratory experience with the MAPS ASM. We discuss calibrations first on the level of individual actuators, including capacitive position sensing, force response function, and individual closed-loop position control with an improved control law. We then describe investigations into the full ASM system - hub, actuators, thin shell, and human - to understand how to optimize interactions between components for dynamical shape control using a feedforward matrix. Finally, we present our results in the form of feedforward matrix and control law parameters that successfully produce a desired mirror surface within 1ms settling time. 
    more » « less
  3. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    The MMT Adaptive optics exoPlanet characterization System (MAPS) is an exoplanet characterization program that encompasses instrument development, observational science, and education. The instrument we are developing for the 6.5m MMT observatory is multi-faceted, including a refurbished 336-actuator adaptive secondary mirror (ASM); two pyramid wavefront sensors (PyWFS's); a 1-kHz adaptive optics (AO) control loop; a high-resolution and long-wavelength upgrade to the Arizona infraRed Imager and Echelle Spectrograph (ARIES); and a new-AO-optimized upgrade to the MMT-sensitive polarimeter (MMT-Pol). With the completed MAPS instrument, we will execute a 60-night science program to characterize the atmospheric composition and dynamics of ~50-100 planets around other stars. The project is approaching first light, anticipated for Summer/Fall of 2022. With the electrical and optical tests complete and passing the review milestone for the ASM's development, it is currently being tuned. The PyWFS's are being built and integrated in their respective labs: the visible-light PyWFS at the University of Arizona (UA), and the infrared PyWFS at the University of Toronto (UT). The top-level AO control software is being developed at UA, with an on-sky calibration algorithm being developed at UT. ARIES development continues at UA, and MMT-Pol development is at the University of Minnesota. The science and education programs are in planning and preparation. We will present the design and development of the entire MAPS instrument and project, including an overview of lab results and next steps. 
    more » « less
  4. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    MAPS, MMT Adaptive optics exoPlanet characterization System, is the upgrade of the adaptive optics system for 6.5-m MMT. It is an NSF MSIP-funded project that includes developing an adaptive-secondary mirror, visible and near-infrared pyramid wavefront sensors, and the upgrade of Arizona infrared imager and echelle spectrograph (ARIES) and MMT High Precision Imaging Polarimeter (MMTPol) science cameras. This paper will present the design and development of the visible pyramid wavefront sensor, VPWFS. It consists of an acquisition camera, a fast-steering tip-tilt modulation mirror, a pyramid, a pupil imaging triplet lens, and a low noise and high-speed frame rate based CCID75 camera. We will report on hardware and software, present the laboratory characterization results of individual subsystems, and outline the on-sky commissioning plan. 
    more » « less
  5. One of the top priorities in observational astronomy is the direct imaging and characterization of extrasolar planets (exoplanets) and planetary systems. Direct images of rocky exoplanets are of particular interest in the search for life beyond the Earth, but they tend to be rather challenging targets since they are orders-of-magnitude dimmer than their host stars and are separated by small angular distances that are comparable to the classicalλ<#comment/>/Ddiffraction limit, even for the coming generation of 30 m class telescopes. Current and planned efforts for ground-based direct imaging of exoplanets combine high-order adaptive optics (AO) with a stellar coronagraph observing at wavelengths ranging from the visible to the mid-IR. The primary barrier to achieving high contrast with current direct imaging methods is quasi-static speckles, caused largely by non-common path aberrations (NCPAs) in the coronagraph optical train. Recent work has demonstrated that millisecond imaging, which effectively “freezes” the atmosphere’s turbulent phase screens, should allow the wavefront sensor (WFS) telemetry to be used as a probe of the optical system to measure NCPAs. Starting with a realistic model of a telescope with an AO system and a stellar coronagraph, this paper provides simulations of several closely related regression models that take advantage of millisecond telemetry from the WFS and coronagraph’s science camera. The simplest regression model, called the naïve estimator, does not treat the noise and other sources of information loss in the WFS. Despite its flaws, in one of the simulations presented herein, the naïve estimator provides a useful estimate of an NCPA of∼<#comment/>0.5radian RMS (≈<#comment/>λ<#comment/>/13), with an accuracy of∼<#comment/>0.06radian RMS in 1 min of simulated sky time on a magnitude 8 star. Thebias-corrected estimatorgeneralizes the regression model to account for the noise and information loss in the WFS. A simulation of the bias-corrected estimator with 4 min of sky time included an NCPA of∼<#comment/>0.05radian RMS (≈<#comment/>λ<#comment/>/130) and an extended exoplanet scene. The joint regression of the bias-corrected estimator simultaneously achieved an NCPA estimate with an accuracy of∼<#comment/>5×<#comment/>10−<#comment/>3radian RMS and an estimate of the exoplanet scene that was free of the self-subtraction artifacts typically associated with differential imaging. The5σ<#comment/>contrast achieved by imaging of the exoplanet scene was∼<#comment/>1.7×<#comment/>10−<#comment/>4at a distance of3λ<#comment/>/Dfrom the star and∼<#comment/>2.1×<#comment/>10−<#comment/>5at10λ<#comment/>/D. These contrast values are comparable to the very best on-sky results obtained from multi-wavelength observations that employ both angular differential imaging (ADI) and spectral differential imaging (SDI). This comparable performance is despite the fact that our simulations are quasi-monochromatic, which makes SDI impossible, nor do they have diurnal field rotation, which makes ADI impossible. The error covariance matrix of the joint regression shows substantial correlations in the exoplanet and NCPA estimation errors, indicating that exoplanet intensity and NCPA need to be estimated self-consistently to achieve high contrast.

     
    more » « less