skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The decay of a dipolar vortex in a weakly dispersive environment
A simple model is presented for the evolution of a dipolar vortex propagating horizontally in a vertical-slice model of a weakly stratified inviscid atmosphere, following the model of Flierl & Haines ( Phys. Fluids , vol. 6, 1994, pp. 3487–3497) for a modon on the $${\rm beta}$$ -plane. The dipole is assumed to evolve to remain within the family of Lamb–Chaplygin dipoles but with varying radius and speed. The dipole loses energy and impulse through internal wave radiation. It is argued, and verified against numerical solutions of the full equations, that an appropriately defined centre vorticity for the dipole is closely conserved throughout the flow evolution. Combining conservation of centre vorticity with the requirement that the dipole energy loss balances the work done on the fluid by internal wave radiation gives a model that captures much of the observed dipole decay. Similar results are noted for a cylindrical dipole propagating along the axis of a rotating fluid when the dipole axis is perpendicular to the axis of rotation and for a spherical vortex propagating horizontally in a weakly stratified fluid. The model extends to fluids of small viscosity and so provides an estimate for the relative importance of wave drag and dissipation in dipole decay.  more » « less
Award ID(s):
1941963
PAR ID:
10272957
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
917
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hill's vortex is a classical solution of the incompressible Euler equations which consists of an axisymmetric spherical region of constant vorticity matched to an irrotational external flow. This solution has been shown to be a member of a one-parameter family of steady vortex rings and as such is commonly used as a simple analytic model for a vortex ring. Here, we model the decay of a Hill's vortex in a weakly rotating flow due to the radiation of inertial waves. We derive analytic results for the modification of the vortex structure by rotational effects and the generated wave field using an asymptotic approach where the rotation rate, or inverse Rossby number, is taken to be small. Using this model, we predict the decay of the vortex speed and radius by combining the flux of vortex energy to the wave field with the conservation of peak vorticity. We test our results against numerical simulations of the full axisymmetric Navier–Stokes equations. 
    more » « less
  2. The free fall of an ellipse in an infinite linearly-stratified fluid is investigated using a linear two-dimensional, Boussinesq, diffusionless, inviscid model. The oscillations of the ellipse decay because of radiation damping, but unlike the case of a circular cylinder, the ellipse can also rotate and move horizontally. The resulting equations are solved analytically for some simple cases for which there is little or no rotation. Motions with rotation are studied numerically using a spectral method to solve for the wave field in the fluid. 
    more » « less
  3. null (Ed.)
    Numerous field observations of tsunami-induced eddies in ports and harbours have been reported for recent tsunami events. We examine the evolution of a turbulent shallow-water monopolar vortex generated by a long wave through a series of large-scale experiments in a rectangular wave basin. A leading-elevation asymmetric wave is guided through a narrow channel to form a flow separation region on the lee side of a straight vertical breakwater, which coupled with the transient flow leads to the formation of a monopolar turbulent coherent structure (TCS). The vortex flow after detachment from the trailing jet is fully turbulent ( $$Re_h \sim O(10^{4}\text {--}10^{5}$$ )) for the remainder of the experimental duration. The free surface velocity field was extracted through particle tracking velocimetry over several experimental trials. The first-order model proposed by Seol & Jirka ( J. Fluid Mech. , vol. 665, 2010, pp. 274–299) to predict the decay and spatial growth of shallow-water vortices fits the experimental data well. Bottom friction is predicted to induce a $$t^{-1}$$ azimuthal velocity decay and turbulent viscous diffusion results in a $$\sqrt {t}$$ bulk vortex radial growth, where $$t$$ represents time. The azimuthal velocity, vorticity and free surface elevation profiles are well described through an idealised geophysical vortex. Kinematic free surface boundary conditions predict weak upwelling in the TCS-centre, followed by a zone of downwelling in a recirculation pattern along the water column. The vertical confinement of the flow is quantified through the ratio of kinetic energy contained in the secondary and primary surface velocity fields and a transition point towards a quasi-two-dimensional flow is identified. 
    more » « less
  4. Initially, elliptical, quasi-two-dimensional (2D) fluid vortices can split into multiple pieces if the aspect ratio is sufficiently large due to the growth and saturation of perturbations known as Love modes on the vortex edge. Presented here are experiments and numerical simulations, showing that the aspect ratio threshold for vortex splitting is significantly higher for vortices with realistic, smooth edges than that predicted by a simple “vortex patch” model, where the vorticity is treated as piecewise constant inside a deformable boundary. The experiments are conducted by exploiting the E × B drift dynamics of collisionless, pure electron plasmas in a Penning–Malmberg trap, which closely model 2D vortex dynamics due to an isomorphism between the Drift–Poisson equations describing the plasmas and the Euler equations describing ideal fluids. The simulations use a particle-in-cell method to model the evolution of a set of point vortices. The aspect ratio splitting threshold ranges up to about twice as large as the vortex patch prediction and depends on the edge vorticity gradient. This is thought to be due to spatial Landau damping, which decreases the vortex aspect ratio over time and, thus, stabilizes the Love modes. Near the threshold, asymmetric splitting events are observed in which one of the split products contains much less circulation than the other. These results are relevant to a wide range of quasi-2D fluid systems, including geophysical fluids, astrophysical disks, and drift-wave eddies in tokamak plasmas. 
    more » « less
  5. We derive and investigate numerically a reduced model for wave–vortex interactions involving non-dispersive waves, which we study in a two-dimensional shallow water system with an eye towards applications in atmosphere–ocean fluid dynamics. The model consists of a coupled set of nonlinear partial differential equations for the Lagrangian-mean velocity and the wave-related pseudomomentum vector field defined in generalized Lagrangian-mean theory. It allows for two-way interactions between the waves and the balanced flow that is controlled by the distribution of Lagrangian-mean potential vorticity, and for strong solutions it features a desirable exact energy conservation law for the sum of wave energy and mean flow energy. Our model goes beyond standard ray tracing as we can derive weak solutions that contain discontinuities in the pseudomomentum field, using the theory of weakly hyperbolic systems. This allows caustics to form without predicting infinite wave amplitudes, as would be the case in the standard ray-tracing theory. Suitable wave forcing and dissipation terms are added to the model and a numerical scheme for the model is implemented as a coupled set of pseudo-spectral and finite-volume integrators. Idealized examples of interactions between wavepackets and simple vortex structures are presented to illustrate the model dynamics. The unforced and non-dissipative simulations suggest a heuristic rule of ‘greedy’ waves, i.e. in the long run the wave field always extracts energy from the mean flow. 
    more » « less