We report a method to predict equilibrium concentration profiles of hard ellipses in nonuniform fields, including multiphase equilibria of fluid, nematic, and crystal phases. Our model is based on a balance of osmotic pressure and field mediated forces by employing the local density approximation. Implementation of this model requires development of accurate equations of state for each phase as a function of hard ellipse aspect ratio in the range k = 1–9. The predicted density profiles display overall good agreement with Monte Carlo simulations for hard ellipse aspect ratios k = 2, 4, and 6 in gravitational and electric fields with fluid–nematic, fluid–crystal, and fluid–nematic–crystal multiphase equilibria. The profiles of local order parameters for positional and orientational order display good agreement with values expected for bulk homogeneous hard ellipses in the same density ranges. Small discrepancies between predictions and simulations are observed at crystal–nematic and crystal–fluid interfaces due to limitations of the local density approximation, finite system sizes, and uniform periodic boundary conditions. The ability of the model to capture multiphase equilibria of hard ellipses in nonuniform fields as a function of particle aspect ratio provides a basis to control anisotropic particle microstructure on interfacial energy landscapes in diverse materials and applications.
more »
« less
This content will become publicly available on December 1, 2025
The fall of an ellipse in a stratified fluid
The free fall of an ellipse in an infinite linearly-stratified fluid is investigated using a linear two-dimensional, Boussinesq, diffusionless, inviscid model. The oscillations of the ellipse decay because of radiation damping, but unlike the case of a circular cylinder, the ellipse can also rotate and move horizontally. The resulting equations are solved analytically for some simple cases for which there is little or no rotation. Motions with rotation are studied numerically using a spectral method to solve for the wave field in the fluid.
more »
« less
- Award ID(s):
- 0133978
- PAR ID:
- 10559312
- Publisher / Repository:
- Institute of Physics
- Date Published:
- Journal Name:
- Fluid Dynamics Research
- Volume:
- 56
- Issue:
- 6
- ISSN:
- 0169-5983
- Page Range / eLocation ID:
- 061402
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract (Ultra)light spin-1 particles — dark photons — can constitute all of dark matter (DM) and have beyond Standard Model couplings. This can lead to a coherent, oscillatory signature in terrestrial detectors that depends on the coupling strength. We provide a signal analysis and statistical framework for inferring the properties of such DM by taking into account (i) the stochastic and (ii) the vector nature of the underlying field, along with (iii) the effects due to the Earth's rotation. Owing to equipartition, on time scales shorter than the coherence time the DM field vector typically traces out a fixed ellipse. Taking this ellipse and the rotation of the Earth into account, we highlight a distinctive three-peak signal in Fourier space that can be used to constrain DM coupling strengths. Accounting for all three peaks, we derive latitude-independent constraints on such DM couplings, unlike those stemming from single-peak studies. We apply our framework to the search for ultralightB - LDM using optomechanical sensors, demonstrating the ability to delve into previously unprobed regions of this DM candidate's parameter space.more » « less
-
We derive a set of equations in conformal variables that describe a potential flow of an ideal two-dimensional inviscid fluid with free surface in a bounded domain. This formulation is free of numerical instabilities present in the equations for the surface elevation and potential derived in Dyachenko et al. ( Plasma Phys. Rep. vol. 22 (10), 1996, pp. 829–840) with some restrictions on analyticity relieved, which allows to treat a finite volume of fluid enclosed by a free-moving boundary. We illustrate with a comparison of numerical simulations of the Dirichlet ellipse, an exact solution for a zero surface tension fluid. We demonstrate how the oscillations of the free surface of a unit disc droplet may lead to breaking of one droplet into two when surface tension is present.more » « less
-
Abstract This paper is concerned with the billiard version of Jacobi's last geometric statement and its generalizations. Given a non‐focal point inside an elliptic billiard table, one considers the family of rays emanating from and the caustic of the reflected family after reflections off the ellipse, for each positive integer . It is known that has at least four cusps and it has been conjectured that it has exactly four (ordinary) cusps. The present paper presents a proof of this conjecture in the special case when the ellipse is a circle. In the case of an arbitrary ellipse, we give an explicit description of the location of four of the cusps of , though we do not prove that these are the only cusps.more » « less
-
Abstract This work proposes a combined deep learning based approach to improve thermal component heat sinks involving turbulent fluid flow. A Generative Adversarial Network (GAN) is trained to learn and recreate the new ellipse based heat sinks. Simulation data for new designs is efficiently generated using OpenFOAM 7 (Open Source Computational Fluid Dynamics software) along with high throughput computing. To improve the speed of design evaluation, a Convolutional Neural Network (CNN) is trained to predict the entire temperature field for a given design. The trained CNN is able to predict the entire temperature field for the design with a mean average error of 1.140 degrees kelvin in 0.04 seconds (22,500 times faster than the simulation). A combined model is formed using the trained CNN and GAN networks to create and simulate new designs. The combined model optimizes the latent representation of 64 random designs on a Graphical Processing Unit (GPU) in ten minutes. The optimized designs perform fourteen degrees kelvin better on average than the non-optimized designs. The highest preforming design outperforms any design in the training data by 1.83 degrees kelvin.more » « less
An official website of the United States government
