skip to main content


Title: Evidence for a monolayer excitonic insulator
The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tunable fashion. The ground state of this two-dimensional (2D) crystal can be electrostatically tuned from a quantum spin Hall insulator (QSHI) to a superconductor. However, much remains unknown about the nature of these ground states, including the gap-opening mechanism of the insulating state. Here we report systematic studies of the insulating phase in WTe2 monolayer and uncover evidence supporting that the QSHI is also an excitonic insulator (EI). An EI, arising from the spontaneous formation of electron-hole bound states (excitons), is a largely unexplored quantum phase to date, especially when it is topological. Our experiments on high-quality transport devices reveal the presence of an intrinsic insulating state at the charge neutrality point (CNP) in clean samples. The state exhibits both a strong sensitivity to the electric displacement field and a Hall anomaly that are consistent with the excitonic pairing. We further confirm the correlated nature of this charge-neutral insulator by tunneling spectroscopy. Our results support the existence of an EI phase in the clean limit and rule out alternative scenarios of a band insulator or a localized insulator. These observations lay the foundation for understanding a new class of correlated insulators with nontrivial topology and identify monolayer WTe2 as a promising candidate for exploring quantum phases of ground-state excitons.  more » « less
Award ID(s):
1904442 1420541
NSF-PAR ID:
10272994
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
Volume:
arXiv:2010.05390
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers’ pair of minibands can be$${{\mathbb{Z}}}_{2}$$Z2non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers’ minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2on top of Sb2Te3films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.

     
    more » « less
  2. Abstract

    Flat band moiré superlattices have recently emerged as unique platforms for investigating the interplay between strong electronic correlations, nontrivial band topology, and multiple isospin ‘flavor’ symmetries. Twisted monolayer-bilayer graphene (tMBG) is an especially rich system owing to its low crystal symmetry and the tunability of its bandwidth and topology with an external electric field. Here, we find that orbital magnetism is abundant within the correlated phase diagram of tMBG, giving rise to the anomalous Hall effect in correlated metallic states nearby most odd integer fillings of the flat conduction band, as well as correlated Chern insulator states stabilized in an external magnetic field. The behavior of the states at zero field appears to be inconsistent with simple spin and valley polarization for the specific range of twist angles we investigate, and instead may plausibly result from an intervalley coherent (IVC) state with an order parameter that breaks time reversal symmetry. The application of a magnetic field further tunes the competition between correlated states, in some cases driving first-order topological phase transitions. Our results underscore the rich interplay between closely competing correlated ground states in tMBG, with possible implications for probing exotic IVC ordering.

     
    more » « less
  3. Abstract

    During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators – an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems.

     
    more » « less
  4. Electron-hole bound pairs, or excitons, are common excitations in semiconductors. They can spontaneously form and condense into a new insulating ground state—the so-called excitonic insulator—when the energy of electron-hole Coulomb attraction exceeds the band gap. In the presence of electron-phonon coupling, a periodic lattice distortion often concomitantly occurs. However, a similar structural transition can also be induced by electron-phonon coupling itself, therefore hindering the clean identification of bulk excitonic insulators (e.g., which instability is the driving force of the phase transition). Using high-resolution synchrotron x-ray diffraction and angle-resolved photoemission spectroscopy, we identify key electron-phonon coupling effects in a leading excitonic insulator candidate Ta 2 NiSe 5 . These include an extensive unidirectional lattice fluctuation and an electronic pseudogap in the normal state, as well as a negative electronic compressibility in the charge-doped broken-symmetry state. In combination with first principles and model calculations, we use the normal state electronic spectra to quantitatively determine the electron-phonon interaction vertex g and interband Coulomb interaction V in the minimal lattice model, the solution to which captures the experimental observations. Moreover, we show how the Coulomb and electron-phonon coupling effects can be unambiguously separated based on the solution to quantified microscopic models. Finally, we discuss how the strong lattice fluctuations enabled by low dimensionality relate to the unique electron-phonon interaction effects beyond the textbook Born-Oppenheimer approximation. 
    more » « less
  5. Abstract

    In recent years, correlated insulating states, unconventional superconductivity, and topologically non-trivial phases have all been observed in several moiré heterostructures. However, understanding of the physical mechanisms behind these phenomena is hampered by the lack of local electronic structure data. Here, we use scanning tunnelling microscopy and spectroscopy to demonstrate how the interplay between correlation, topology, and local atomic structure determines the behaviour of electron-doped twisted monolayer–bilayer graphene. Through gate- and magnetic field-dependent measurements, we observe local spectroscopic signatures indicating a quantum anomalous Hall insulating state with a total Chern number of ±2 at a doping level of three electrons per moiré unit cell. We show that the sign of the Chern number and associated magnetism can be electrostatically switched only over a limited range of twist angle and sample hetero-strain values. This results from a competition between the orbital magnetization of filled bulk bands and chiral edge states, which is sensitive to strain-induced distortions in the moiré superlattice.

     
    more » « less