skip to main content


Title: Addressing the Unique Qualities of Upper-Level Biology Course-based Undergraduate Research Experiences through the Integration of Skill-Building
Synopsis  Early exposure to course-based undergraduate research experiences (CUREs) in introductory biology courses can promote positive student outcomes such as increased confidence, critical thinking, and views of applicability in lower-level courses, but it is unknown if these same impacts are achieved by upper-level courses. Upper-level courses differ from introductory courses in several ways, and one difference that could impact these positive student outcomes is the importance of balancing structure with independence in upper-level CUREs where students typically have more autonomy and greater complexity in their research projects. Here we compare and discuss two formats of upper-level biology CUREs (Guided and Autonomous) that vary along a continuum between structure and independence. We share our experiences teaching an upper-level CURE in two different formats and contrast those formats through student reported perceptions of confidence, professional applicability, and CURE format. Results indicate that the Guided Format (i.e., a more even balance between structure and independence) led to more positive impacts on student outcomes than the Autonomous Format (less structure and increased independence). We review the benefits and drawbacks of each approach while considering the unique elements of upper-level courses relative to lower-level courses. We conclude with a discussion of how implementing structured skill-building can assist instructors in adapting CUREs to their courses.  more » « less
Award ID(s):
1751296
NSF-PAR ID:
10273000
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The drive to broaden equitable access to undergraduate research experiences has catalyzed the development and implementation of course‐based undergraduate research experiences (CUREs). Biology education has prioritized embedding CUREs in introductory labs, which are frequently taught by graduate teaching assistants (GTAs). Thus, a CURE GTA is expected not only to teach but also to support novice student researchers. We know little about how GTAs perform as research mentors in a CURE, or how the quality of their mentorship and support impacts undergraduate students. To address this gap in knowledge, we conducted a phenomenological study of an introductory biology CURE, interviewing 25 undergraduate students taught by nine different GTAs at a single institution. We used self‐determination theory to guide our exploration of how students' autonomous motivation to engage in a CURE is impacted by perceptions of GTA support. We found that highly motivated students were more likely to experience factors hypothesized to optimize motivation in the CURE, and to perceive that their GTA was highly supportive of these elements. Students with lower motivation were less likely to report engaging in fundamental elements of research offered in a CURE. Our findings suggest that GTAs directly impact students' motivation, which can, in turn, influence whether students perceive receiving the full research experience as intended in a CURE. We contend that practitioners who coordinate CUREs led by GTAs should therefore offer curated training that emphasizes supporting students' autonomous motivation in the course and engagement in the research. Our work suggests that GTAs may differ in their capacity to provide students with the support they need to receive and benefit from certain pedagogical practices. Future work assessing innovative approaches in undergraduate biology laboratory courses should continue to investigate potenital differential outcomes for students taught by GTAs.

     
    more » « less
  2. Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in “cookbook” format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, oftenviacourse-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department’s curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a “research program-linked CURE.” The research questions come directly from a faculty member’s research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like “UTRs affect RNA and protein expression levels,” “there is functional redundancy among RNA helicases,” and “carbon starvation alters mRNA 5′ end chemistries.” We conducted standard assessments and developed a customized “Skills and Concepts Inventory” survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols.

     
    more » « less
  3. Course-based Undergraduate Research Experiences (CUREs) are an increasingly utilized model for exposing students to research. The lack of robust assessments is a major hurdle to wider adoption of CUREs. The Coronavirus Infectious Disease 2019 (COVID-19) pandemic necessitated a drastic shift of in-person courses to the online format. Using the Participant Perception Indicator (PPI) survey, we measured students’ self-reported changes in learning from such a biochemistry course at a large university in south Florida based on the Biochemistry Authentic Scientific Inquiry Lab (BASIL) model. By doing this, we were able to better understand the student-benefits of CUREs and how these benefits are affected by changes in learning modalities between two relevant semesters, i.e., winter and summer of 2020. Anticipated learning outcomes (ALOs) help partially fill the gap left by the loss of physical interaction in experimental procedures. Our analysis indicated that students learned more through bioinformatic experiments compared to their wet-lab counterparts. Using pre- and post- surveys, students reported that their experience and confidence gains lagged behind their knowledge gain of technique-based skills. Students are not as confident in their understanding of techniques when unable to perform those in the physical laboratory. Thus, despite extensive pursuit of the purpose and protocols of the experiments and techniques, neither their experience nor their confidence was on par with their knowledge. This study is one of the first examples demonstrating a quantitative student-learning assessment of a CURE in the science, technology, engineering, and mathematics (STEM) disciplines. The novel assessment strategies targeted to identify gaps in learning mastery could facilitate the adoption of CUREs, fostering opportunities for all undergraduate students to vital laboratory research experiences in STEM. 
    more » « less
  4. Course-based undergraduate research experiences (CUREs) are an effective way to integrate research into an undergraduate science curriculum and extend research experiences to a large, diverse group of early-career students. We developed a biology CURE at the University of Miami (UM) called the UM Authentic Research Laboratories (UMARL), in which groups of first-year students investigated novel questions and conducted projects of their own design related to the research themes of the faculty instructors. Herein, we describe the implementation and student outcomes of this long-running CURE. Using a national survey of student learning through research experiences in courses, we found that UMARL led to high student self-reported learning gains in research skills such as data analysis and science communication, as well as personal development skills such as self-confidence and self-efficacy. Our analysis of academic outcomes revealed that the odds of students who took UMARL engaging in individual research, graduating with a degree in science, technology, engineering, or mathematics (STEM) within 4 years, and graduating with honors were 1.5–1.7 times greater than the odds for a matched group of students from UM’s traditional biology labs. The authenticity of UMARL may have fostered students’ confidence that they can do real research, reinforcing their persistence in STEM. 
    more » « less
  5. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less