The drive to broaden equitable access to undergraduate research experiences has catalyzed the development and implementation of course‐based undergraduate research experiences (CUREs). Biology education has prioritized embedding CUREs in introductory labs, which are frequently taught by graduate teaching assistants (GTAs). Thus, a CURE GTA is expected not only to teach but also to support novice student researchers. We know little about how GTAs perform as research mentors in a CURE, or how the quality of their mentorship and support impacts undergraduate students. To address this gap in knowledge, we conducted a phenomenological study of an introductory biology CURE, interviewing 25 undergraduate students taught by nine different GTAs at a single institution. We used self‐determination theory to guide our exploration of how students' autonomous motivation to engage in a CURE is impacted by perceptions of GTA support. We found that highly motivated students were more likely to experience factors hypothesized to optimize motivation in the CURE, and to perceive that their GTA was highly supportive of these elements. Students with lower motivation were less likely to report engaging in fundamental elements of research offered in a CURE. Our findings suggest that GTAs directly impact students' motivation, which can, in turn, influence whether students perceive receiving the full research experience as intended in a CURE. We contend that practitioners who coordinate CUREs led by GTAs should therefore offer curated training that emphasizes supporting students' autonomous motivation in the course and engagement in the research. Our work suggests that GTAs may differ in their capacity to provide students with the support they need to receive and benefit from certain pedagogical practices. Future work assessing innovative approaches in undergraduate biology laboratory courses should continue to investigate potenital differential outcomes for students taught by GTAs.
- Award ID(s):
- 1751296
- NSF-PAR ID:
- 10273000
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Rumain, Barbara T. (Ed.)Course-based undergraduate research experiences (CUREs) are laboratory courses that integrate broadly relevant problems, discovery, use of the scientific process, collaboration, and iteration to provide more students with research experiences than is possible in individually mentored faculty laboratories. Members of the national Malate dehydrogenase CUREs Community (MCC) investigated the differences in student impacts between traditional laboratory courses (control), a short module CURE within traditional laboratory courses (mCURE), and CUREs lasting the entire course (cCURE). The sample included approximately 1,500 students taught by 22 faculty at 19 institutions. We investigated course structures for elements of a CURE and student outcomes including student knowledge, student learning, student attitudes, interest in future research, overall experience, future GPA, and retention in STEM. We also disaggregated the data to investigate whether underrepresented minority (URM) outcomes were different from White and Asian students. We found that the less time students spent in the CURE the less the course was reported to contain experiences indicative of a CURE. The cCURE imparted the largest impacts for experimental design, career interests, and plans to conduct future research, while the remaining outcomes were similar between the three conditions. The mCURE student outcomes were similar to control courses for most outcomes measured in this study. However, for experimental design, the mCURE was not significantly different than either the control or cCURE. Comparing URM and White/Asian student outcomes indicated no difference for condition, except for interest in future research. Notably, the URM students in the mCURE condition had significantly higher interest in conducting research in the future than White/Asian students.more » « less
-
null (Ed.)Here we present unique perspectives from undergraduate students (n=3) in STEM who have taken both a traditional laboratory iteration and a Course-based Undergraduate Research Experience (CURE) iteration of the same introductory chemistry course. CUREs can be effective models for integrating research in courses and fostering student learning gains. Via phenomenological interviews, we asked students to describe the differences in their perspectives, feelings, and experiences between a traditional lab guided by a lab manual and a CURE. We found that (i.) critical thinking/problem solving, (ii.) group work/collaboration, (iii.) student-led research questions and activities, and (iv.) time management are the top four emergent themes associated with the CURE course. Students also indicated that they learned more disciplinary content in the CURE, and, importantly, that they prefer it over the traditional lab. These findings add another dimension of success to CUREs in STEM education, particularly surrounding student retention.more » « less
-
null (Ed.)Here we evaluate undergraduate student attitudes about science after each of three authentic research experiences in a semester of an introductory biology laboratory course at Utah State University. The three course-based research experiences (CUREs) vary in length and student freedom, and they cover different areas of biology. Students responded to the science attitude items of the CURE Survey. When compared to national data, our students faired similarly, and all students struggled with certain epistemic assumptions about science knowledge. As also seen in the national database, change in science attitude was slight and nonlinear. Student self confidence in what a career scientist is and in scientific process skills was the best predictor of scientific maturity, not the three CUREs or other aspects of students’ background. We discuss the slight positive and negative change in attitude we did influence, and we note that most students would choose to have another research experience.more » « less
-
Abstract Course‐based undergraduate research experiences (CUREs) can provide undergraduate students access to research opportunities when student and faculty resources are limited. In addition to expanding research opportunities, CUREs may also be explored as a pedagogical tool for improving student learning of course content and laboratory skills, as well as improving meta‐cognitive features such as confidence. We examined how a 6‐week CURE in an upper‐level undergraduate biochemistry lab affected student gains in content knowledge and confidence in scientific abilities, compared to a non‐CURE section of the same course. We find that gains in content knowledge were similar between CURE and non‐CURE sections, indicating the CURE does not negatively impact student learning. The CURE was associated with a statistically significant gain in student confidence, compared to non‐CURE group. These results show that even a relatively short CURE can be effective in improving student confidence at scientific research skills, in addition to expanding access to research.