skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis and biological evaluation of fluoro-substituted spiro-isoxazolines as potential anti-viral and anti-cancer agents
Electrophilic fluorine-mediated dearomative spirocyclization has been developed to synthesize a range of fluoro-substituted spiro-isoxazoline ethers and lactones. The in vitro biological assays of synthesized compounds were probed for anti-viral activity against human cytomegalovirus (HCMV) and cytotoxicity against glioblastomas (GBM6) and triple negative breast cancer (MDA MB 231). Interestingly, compounds 4d and 4n showed significant activity against HCMV (IC 50 ∼ 10 μM), while 4l and 5f revealed the highest cytotoxicity with IC 50 = 36 to 80 μM. The synthetic efficacy and biological relevance offer an opportunity to further drug-discovery development of fluoro-spiro-isoxazolines as novel anti-viral and anti-cancer agents.  more » « less
Award ID(s):
1900127
PAR ID:
10273067
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
10
Issue:
50
ISSN:
2046-2069
Page Range / eLocation ID:
30223 to 30237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in‐silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK‐MEL‐28, A431, and SCC‐12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC‐12 squamous carcinoma cell lines. The most active compounds11(A431: IC50 = 5.0 μM, SCC‐12: IC50 = 2.9 μM, SKMEL‐28: IC50 = 4.9 μM, A375: IC50 = 6.7 μM) and13(A431: IC50 = 5.0 μM, SCC‐12: IC50 = 3.3 μM, SKMEL‐28: IC50 = 13.8 μM, A375: IC50 = 17.1 μM), significantly and dose‐dependently induced apoptosis of SCC‐12 and SK‐MEL‐28 cells, as evidenced by the suppression of Bcl‐2 and upregulation of Bax, cleaved caspase‐3, caspase‐9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web‐based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein‐kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure–activity relationship through the preparation and biological evaluation of analogs. 
    more » « less
  2. Three new organotin( iv ) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR ( 1 H, 13 C, 119 Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P 2 1 / c having distorted bipyramidal geometry defined by C 3 SnO 2 . The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC 50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells. 
    more » « less
  3. Abstract PHPT1 is a protein histidine phosphatase that has been implicated in several disease pathways, but the chemical tools necessary to study the biological roles of this enzyme and investigate its utility as a therapeutic target have yet to be developed. To this end, the discovery of PHPT1 inhibitors is an area of significant interest. Here, we report an investigation of illudalic acid and illudalic acid analog‐based inhibition of PHPT1 activity. Four of the seven analogs investigated had IC50values below 5 μM, with the most potent compound (IA1‐8H2) exhibiting an IC50value of 3.4±0.7 μM. Interestingly, these compounds appear to be non‐covalent, non‐competitive inhibitors of PHPT1 activity, in contrast to other recently reported PHPT1 inhibitors. Mutating the three cysteine residues to alanine has no effect on inhibition, indicating that cysteine is not critical for interactions between inhibitor and enzyme. 
    more » « less
  4. Abstract Fucosylated chondroitin sulfate (FucCS) is a unique marine glycosaminoglycan that exhibits diverse biological functions, including antiviral and anticoagulant activity. In previous work, the FucCS derived from Pentacta pygmaea (PpFucCS) showed moderate anticoagulant effect but high inhibitory activity against the Wuhan strain of severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this study, we perform free-radical depolymerization of PpFucCS by the copper-based Fenton method to generate low molecular weight (MW) oligosaccharides. PpFucCS oligosaccharides were structurally analyzed by 1H nuclear magnetic resonance spectroscopy and were used to conduct structure–activity relationship studies regarding their effects against SARS-CoV-2 and clotting. Anticoagulant properties were measured by activated partial thromboplastin time, protease (factors Xa and IIa) inhibition by serine protease inhibitors (antithrombin [AT] and heparin cofactor II [HCII]), and competitive surface plasmon resonance (SPR) assay using AT, HCII, and IIa. Anti-SARS-CoV-2 properties were measured by the concentration-response inhibitory curves of HEK-293T-human angiotensin-converting enzyme-2 cells infected with a baculovirus pseudotyped SARS-CoV-2 Delta variant spike (S)-protein and competitive SPR assays using multiple S-proteins (Wuhan, N501Y [Alpha], K417T/E484K/N501Y [Gamma], L542R [Delta], and Omicron [BA.2 subvariant]). Cytotoxicity of native PpFucCS and oligosaccharides was also assessed. The PpFucCS-derived oligosaccharide fraction of the highest MW showed great anti-SARS-CoV-2 Delta activity and reduced anticoagulant properties. Results have indicated no cytotoxicity and MW dependency on both anti-SARS-CoV-2 and anticoagulant effects of PpFucCS, as both actions were reduced accordingly to the MW decrease of PpFucCS. Our results demonstrate that the high-MW structures of PpFucCS is a key structural element to achieve the maximal anti-SARS-CoV-2 and anticoagulant effects. 
    more » « less
  5. Immunotherapy is a powerful technique where immune cells are modified to improve cytotoxicity against cancerous cells to treat cancers that do not respond to surgery, chemotherapy, or radiotherapy. Expressing chimeric antigen receptor (CAR) in immune cells, typically T lymphocytes, is a practical modification that drives an immune response against cancerous tissue. CAR-T efficacy is suboptimal in solid tumors due to the tumor microenvironment (TME) that limits T lymphocyte cytotoxicity. In this study, we demonstrate that neutrophils differentiated from human pluripotent stem cells modified with AAVS1-inserted CAR constructs showed a robust cytotoxic effect against prostate-specific membrane antigen (PSMA) expressing LNCaP cells as a model for prostate cancer in vitro. Our results suggest that engineered CAR can significantly enhance the neutrophil anti-tumor effect, providing a new avenue in treating prostate cancers. 
    more » « less