skip to main content

Title: Derivatives of the Fungal Natural Product Illudalic Acid Inhibit the Activity of Protein Histidine Phosphatase PHPT1

PHPT1 is a protein histidine phosphatase that has been implicated in several disease pathways, but the chemical tools necessary to study the biological roles of this enzyme and investigate its utility as a therapeutic target have yet to be developed. To this end, the discovery of PHPT1 inhibitors is an area of significant interest. Here, we report an investigation of illudalic acid and illudalic acid analog‐based inhibition of PHPT1 activity. Four of the seven analogs investigated had IC50values below 5 μM, with the most potent compound (IA1‐8H2) exhibiting an IC50value of 3.4±0.7 μM. Interestingly, these compounds appear to be non‐covalent, non‐competitive inhibitors of PHPT1 activity, in contrast to other recently reported PHPT1 inhibitors. Mutating the three cysteine residues to alanine has no effect on inhibition, indicating that cysteine is not critical for interactions between inhibitor and enzyme.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tyrosinase, an important oxidase involved in the primary immune response in humans, can sometimes become problematic as it can catalyze undesirable oxidation reactions. Therefore, for decades there has been a strong pharmaceutical interest in the discovery of novel inhibitors of this enzyme. Recent studies have also indicated that tyrosinase inhibitors can potentially be used in the treatment of melanoma cancer. Over the years, many new tyrosinase inhibitors have been discovered from various natural sources; however, marine natural products (MNPs) have contributed only a small number of promising candidates. Therefore, in this study we focused on the discovery of new MNP tyrosinase inhibitors of marine cyanobacterial and algal origins. A colorimetric tyrosinase inhibitory assay was used to screen over 4,500 marine extracts against mushroom tyrosinase ( A. bisporus ). Our results revealed that scytonemin monomer (ScyM), a pure compound from our compound library and also the monomeric last-step precursor in the biosynthesis of the well-known cyanobacterial sunscreen pigment “scytonemin,” consistently showed the highest tyrosinase inhibitory score. Determination of the half maximal inhibitory concentration (IC 50 ) further indicated that ScyM is more potent than the commonly used commercial inhibitor standard “kojic acid” (KA; IC 50 of ScyM: 4.90 μM vs. IC 50 of KA: 11.31 μM). After a scaled-up chemical synthesis of ScyM as well as its O -methyl analog (ScyM-OMe), we conducted a series of follow-up studies on their structures, inhibitory properties, and mode of inhibition. Our results supported ScyM as the second case ever of a novel tyrosinase inhibitory compound based on a marine cyanobacterial natural product. The excellent in vitro performance of ScyM makes it a promising candidate for applications such as a skin-whitening agent or an adjuvant therapy for melanoma cancer treatment. 
    more » « less
  2. Abstract

    Cysteine sulfinic acid is a protein posttranslational modification that is formed under oxidative conditions and is regulated both enzymatically and nonenzymatically. Cysteine oxidation to the sulfinic acid has been observed broadly throughout the proteome and can induce activation or inhibition of function in proteins. Recently, wide‐scale, reversible regulation of the sulfinic acid state of cysteine within proteins was identified, posing new questions in cysteine sulfinic acid biology. Existing methods to synthesize peptides with cysteine sulfinic acid can suffer from low yield, due to the formation of side products in the disulfide, sulfenic acid, and/or sulfonic acid oxidation states. Herein, a method for the synthesis of peptides with cysteine sulfinic acids was developed, via protection of cysteine sulfinic acid as the methoxybenzyl (Mob) sulfone. Cysteine Mob sulfone was synthesized as an Fmoc amino acid in one step from the commercially available Mob‐protected Fmoc‐cysteine (Fmoc‐Cys(Mob)‐OH). This amino acid was directly incorporated into peptides via solid‐phase peptide synthesis. Alternatively, peptides were synthesized using Fmoc‐Cys(Mob)‐OH, followed by subsequent oxidation within peptides of the thioether to the Mob sulfone via H2O2and catalytic niobium carbide. Deprotection of peptides under strongly acidic conditions (50% triflic acid, 45% trifluoroacetic acid, 5% water) generated peptides with cysteine sulfinic acid. This approach was applied to the synthesis of peptides containing cysteine sulfinic acid within diverse peptide sequence contexts.

    more » « less
  3. Abstract BACKGROUND

    Azoles are an important class of compounds that are widely used as corrosion inhibitors in aircraft de‐icing agents, cooling towers, semiconductor manufacturing and household dishwashing detergents. They also are important moieties in pharmaceutical drugs and fungicides. Azoles are widespread emerging contaminants occurring frequently in water bodies. Azole compounds can potentially cause inhibition towards key biological processes in natural ecosystems and wastewater treatment processes. Of particular concern is the inhibition of azoles to the nitrification process (aerobic oxidation of ammonium). This study investigated the acute toxicity of azole compounds towards the anaerobic ammonia oxidation (anammox) process, which is an important environmental biotechnology gaining traction for nutrient‐nitrogen removal during wastewater treatment. In this study, using batch bioassay techniques, the anammox toxicity of eight commonly occurring azole compounds was evaluated.


    The results show that 1H‐benzotriazole and 5‐methyl‐1H‐benzotriazole had the highest inhibitory effect on the anammox process, causing 50% decrease in anammox activity (IC50) at concentrations of 19.6 and 17.8 mg L−1, respectively. 1H‐imidazole caused less severe toxicity with an IC50of 79.4 mg L−1. The other azole compounds were either nontoxic (1H‐pyrazole, 1H‐1,2,4‐triazole and 1‐methyl‐pyrazole) or at best mildly toxic (1H‐benzotriazole‐5‐carboxylic acid and 3,5‐dimethyl‐1H‐pyrazole) towards the anammox bacteria at the concentrations tested.


    This study showed that most azole compounds tested displayed mild to low or no toxicity towards the anammox bacteria. The anammox bacteria were found to be far less sensitive to azoles compared to nitrifying bacteria. © 2019 Society of Chemical Industry

    more » « less
  4. Abstract

    Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in‐silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK‐MEL‐28, A431, and SCC‐12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC‐12 squamous carcinoma cell lines. The most active compounds11(A431: IC50 = 5.0 μM, SCC‐12: IC50 = 2.9 μM, SKMEL‐28: IC50 = 4.9 μM, A375: IC50 = 6.7 μM) and13(A431: IC50 = 5.0 μM, SCC‐12: IC50 = 3.3 μM, SKMEL‐28: IC50 = 13.8 μM, A375: IC50 = 17.1 μM), significantly and dose‐dependently induced apoptosis of SCC‐12 and SK‐MEL‐28 cells, as evidenced by the suppression of Bcl‐2 and upregulation of Bax, cleaved caspase‐3, caspase‐9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web‐based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein‐kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure–activity relationship through the preparation and biological evaluation of analogs.

    more » « less
  5. Abstract

    Matrix metalloproteinase‐12 (MMP‐12), also known as macrophage elastase, is a potent inflammatory mediator and therefore an important pharmacological target. Clinical trial failures of broad‐spectrum compound MMP inhibitors suggested that specificity is the key for a successful therapy. To provide the required selectivity, monoclonal antibody (mAb)‐based inhibitors are on the rise. However, poor production of active recombinant human MMP‐12 catalytic domain (cdMMP‐12) presented a technical hurdle for its inhibitory mAb development. We hypothesized that this problem could be solved by designing an expression‐optimized cdMMP‐12 mutant without structural disruptions at its reaction cleft and surrounding area, and thus isolated active‐site inhibitory mAbs could maintain their binding and inhibition functions toward wild‐type MMP‐12. We combined three advances in the field—PROSS algorithm for cdMMP‐12 mutant design, convex paratope antibody library construction, and functional selection for inhibitory mAbs. As a result, isolated Fab inhibitors showed nanomolar affinity and potency toward cdMMP‐12 with high selectivity and high proteolytic stability. Particularly, Fab LH11 targeted the reaction cleft of wild‐type cdMMP‐12 with 75 nM bindingKDand 23 nM inhibition IC50. We expect that our methods can promote the development of mAbs inhibiting important proteases, many of which are recalcitrant to functional production.

    more » « less