skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Equivalence of ML decoding to a continuous optimization problem
Maximum likelihood (ML) and symbolwise maximum aposteriori (MAP) estimation for discrete input sequences play a central role in a number of applications that arise in communications, information and coding theory. Many instances of these problems are proven to be intractable, for example through reduction to NP-complete integer optimization problems. In this work, we prove that the ML estimation of a discrete input sequence (with no assumptions on the encoder/channel used) is equivalent to the solution of a continuous non-convex optimization problem, and that this formulation is closely related to the computation of symbolwise MAP estimates. This equivalence is particularly useful in situations where a function we term the expected likelihood is efficiently computable. In such situations, we give a ML heuristic and show numerics for sequence estimation over the deletion channel.  more » « less
Award ID(s):
1705077 1740047
PAR ID:
10273068
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE International Symposium on Information Theory (ISIT)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in DNA sequencing technology and DNA storage systems have rekindled the interest in deletion channels. Multiple recent works have looked at variants of sequence reconstruction over a single and over multiple deletion channels, a notoriously difficult problem due to its highly combinatorial nature. Although works in theoretical computer science have provided algorithms which guarantee perfect reconstruction with multiple independent observations from the deletion channel, they are only applicable in the large blocklength regime and more restrictively, when the number of observations is also large. Indeed, with only a few observations, perfect reconstruction of the input sequence may not even be possible in most cases. In such situations, maximum likelihood (ML) and maximum aposteriori (MAP) estimates for the deletion channels are natural questions that arise and these have remained open to the best of our knowledge. In this work, we take steps to answer the two aforementioned questions. Specifically: 1. We show that solving for the ML estimate over the single deletion channel (which can be cast as a discrete optimization problem) is equivalent to solving its relaxation, a continuous optimization problem; 2. We exactly compute the symbolwise posterior distributions (under some assumptions on the priors) for both the single as well as multiple deletion channels. As part of our contributions, we also introduce tools to visualize and analyze error events, which we believe could be useful in other related problems concerning deletion channels. 
    more » « less
  2. We propose a new algorithm for inference of gene regulatory networks (GRN) from noisy gene expression data based on maximum-likelihood (ML) adaptive filtering and the discrete fish school search algorithm (DFSS). The approach is based on the general partially-observed Boolean dynamical system (POBDS) model, and as such can be used for simultaneous state and parameter estimation for any Boolean dynamical system observed in noise. The proposed DFSS-ML-BKF algorithm combines the ML adaptive Boolean Kalman Filter (ML-BKF) with DFSS, a version of the Fish School Search algorithm tailored for discrete parameter spaces. Results based on synthetic gene expression time-series data using the well-known p53-MDM2 negative-feedback loop GRN demonstrate that DFSS-ML-BKF can infer the network topology accurately and efficiently. 
    more » « less
  3. Reed–Muller (RM) codes exhibit good performance under maximum-likelihood (ML) decoding due to their highly- symmetric structure. In this paper, we explore the question of whether the code symmetry of RM codes can also be exploited to achieve near-ML performance in practice. The main idea is to apply iterative decoding to a highly-redundant parity-check (PC) matrix that contains only the minimum-weight dual codewords as rows. As examples, we consider the peeling decoder for the binary erasure channel, linear-programming and belief propagation (BP) decoding for the binary-input additive white Gaussian noise channel, and bit-flipping and BP decoding for the binary symmetric channel. For short block lengths, it is shown that near-ML performance can indeed be achieved in many cases. We also propose a method to tailor the PC matrix to the received observation by selecting only a small fraction of useful minimum-weight PCs before decoding begins. This allows one to both improve performance and significantly reduce complexity compared to using the full set of minimum-weight PCs. 
    more » « less
  4. A parametric point process model is developed, with modeling based on the assumption that sequential observations often share latent phenomena, while also possessing idiosyncratic effects. An alternating optimization method is proposed to learn a “registered” point process that accounts for shared structure, as well as “warping” functions that characterize idiosyncratic aspects of each observed sequence. Under reasonable constraints, in each iteration we update the sample-specific warping functions by solving a set of constrained nonlinear programming problems in parallel, and update the model by maximum likelihood estimation. The justifiability, complexity and robustness of the proposed method are investigated in detail, and the influence of sequence stitching on the learning results is discussed empirically. Experiments on both synthetic and real-world data demonstrate that the method yields explainable point process models, achieving encouraging results compared to state-of-the-art methods. 
    more » « less
  5. Score matching is an alternative to maximum likelihood (ML) for estimating a probability distribution parametrized up to a constant of proportionality. By fitting the ''score'' of the distribution, it sidesteps the need to compute this constant of proportionality (which is often intractable). While score matching and variants thereof are popular in practice, precise theoretical understanding of the benefits and tradeoffs with maximum likelihood---both computational and statistical---are not well understood. In this work, we give the first example of a natural exponential family of distributions such that the score matching loss is computationally efficient to optimize, and has a comparable statistical efficiency to ML, while the ML loss is intractable to optimize using a gradient-based method. The family consists of exponentials of polynomials of fixed degree, and our result can be viewed as a continuous analogue of recent developments in the discrete setting. Precisely, we show: (1) Designing a zeroth-order or first-order oracle for optimizing the maximum likelihood loss is NP-hard. (2) Maximum likelihood has a statistical efficiency polynomial in the ambient dimension and the radius of the parameters of the family. (3) Minimizing the score matching loss is both computationally and statistically efficient, with complexity polynomial in the ambient dimension. 
    more » « less