skip to main content


Title: Ensemble bootstrap methodology for forecasting dynamic growth processes using differential equations: application to epidemic outbreaks
Abstract Background Ensemble modeling aims to boost the forecasting performance by systematically integrating the predictive accuracy across individual models. Here we introduce a simple-yet-powerful ensemble methodology for forecasting the trajectory of dynamic growth processes that are defined by a system of non-linear differential equations with applications to infectious disease spread. Methods We propose and assess the performance of two ensemble modeling schemes with different parametric bootstrapping procedures for trajectory forecasting and uncertainty quantification. Specifically, we conduct sequential probabilistic forecasts to evaluate their forecasting performance using simple dynamical growth models with good track records including the Richards model, the generalized-logistic growth model, and the Gompertz model. We first test and verify the functionality of the method using simulated data from phenomenological models and a mechanistic transmission model. Next, the performance of the method is demonstrated using a diversity of epidemic datasets including scenario outbreak data of the Ebola Forecasting Challenge and real-world epidemic data outbreaks of including influenza, plague, Zika, and COVID-19. Results We found that the ensemble method that randomly selects a model from the set of individual models for each time point of the trajectory of the epidemic frequently outcompeted the individual models as well as an alternative ensemble method based on the weighted combination of the individual models and yields broader and more realistic uncertainty bounds for the trajectory envelope, achieving not only better coverage rate of the 95% prediction interval but also improved mean interval scores across a diversity of epidemic datasets. Conclusion Our new methodology for ensemble forecasting outcompete component models and an alternative ensemble model that differ in how the variance is evaluated for the generation of the prediction intervals of the forecasts.  more » « less
Award ID(s):
2034003
NSF-PAR ID:
10273071
Author(s) / Creator(s):
;
Date Published:
Journal Name:
BMC Medical Research Methodology
Volume:
21
Issue:
1
ISSN:
1471-2288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Real-time forecasting of non-stationary time series is a challenging problem, especially when the time series evolves rapidly. For such cases, it has been observed that ensemble models consisting of a diverse set of model classes can perform consistently better than individual models. In order to account for the nonstationarity of the data and the lack of availability of training examples, the models are retrained in real-time using the most recent observed data samples. Motivated by the robust performance properties of ensemble models, we developed a Bayesian model averaging ensemble technique consisting of statistical, deep learning, and compartmental models for fore-casting epidemiological signals, specifically, COVID-19 signals. We observed the epidemic dynamics go through several phases (waves). In our ensemble model, we observed that different model classes performed differently during the various phases. Armed with this understanding, in this paper, we propose a modification to the ensembling method to employ this phase information and use different weighting schemes for each phase to produce improved forecasts. However, predicting the phases of such time series is a significant challenge, especially when behavioral and immunological adaptations govern the evolution of the time series. We explore multiple datasets that can serve as leading indicators of trend changes and employ transfer entropy techniques to capture the relevant indicator. We propose a phase prediction algorithm to estimate the phases using the leading indicators. Using the knowledge of the estimated phase, we selectively sample the training data from similar phases. We evaluate our proposed methodology on our currently deployed COVID-19 forecasting model and the COVID-19 ForecastHub models. The overall performance of the proposed model is consistent across the pandemic. More importantly, it is ranked second during two critical rapid growth phases in cases, regimes where the performance of most models from the ForecastHub dropped significantly. 
    more » « less
  2. Abstract Background

    Dynamical mathematical models defined by a system of differential equations are typically not easily accessible to non-experts. However, forecasts based on these types of models can help gain insights into the mechanisms driving the process and may outcompete simpler phenomenological growth models. Here we introduce a friendly toolbox,SpatialWavePredict, to characterize and forecast the spatial wave sub-epidemic model, which captures diverse wave dynamics by aggregating multiple asynchronous growth processes and has outperformed simpler phenomenological growth models in short-term forecasts of various infectious diseases outbreaks including SARS, Ebola, and the early waves of the COVID-19 pandemic in the US.

    Results

    This tutorial-based primer introduces and illustrates a user-friendly MATLAB toolbox for fitting and forecasting time-series trajectories using an ensemble spatial wave sub-epidemic model based on ordinary differential equations. Scientists, policymakers, and students can use the toolbox to conduct real-time short-term forecasts. The five-parameter epidemic wave model in the toolbox aggregates linked overlapping sub-epidemics and captures a rich spectrum of epidemic wave dynamics, including oscillatory wave behavior and plateaus. An ensemble strategy aims to improve forecasting performance by combining the resulting top-ranked models. The toolbox provides a tutorial for forecasting time-series trajectories, including the full uncertainty distribution derived through parametric bootstrapping, which is needed to construct prediction intervals and evaluate their accuracy. Functions are available to assess forecasting performance, estimation methods, error structures in the data, and forecasting horizons. The toolbox also includes functions to quantify forecasting performance using metrics that evaluate point and distributional forecasts, including the weighted interval score.

    Conclusions

    We have developed the first comprehensive toolbox to characterize and forecast time-series data using an ensemble spatial wave sub-epidemic wave model. As an epidemic situation or contagion occurs, the tools presented in this tutorial can facilitate policymakers to guide the implementation of containment strategies and assess the impact of control interventions. We demonstrate the functionality of the toolbox with examples, including a tutorial video, and is illustrated using daily data on the COVID-19 pandemic in the USA.

     
    more » « less
  3. Background:

    Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.

    Methods:

    We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.

    Results:

    Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.

    Conclusions:

    Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

    Funding:

    AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

     
    more » « less
  4. Abstract

    We propose a piecewise linear quantile trend model to analyse the trajectory of the COVID-19 daily new cases (i.e. the infection curve) simultaneously across multiple quantiles. The model is intuitive, interpretable and naturally captures the phase transitions of the epidemic growth rate via change-points. Unlike the mean trend model and least squares estimation, our quantile-based approach is robust to outliers, captures heteroscedasticity (commonly exhibited by COVID-19 infection curves) and automatically delivers both point and interval forecasts with minimal assumptions. Building on a self-normalized (SN) test statistic, this paper proposes a novel segmentation algorithm for multiple change-point estimation. Theoretical guarantees such as segmentation consistency are established under mild and verifiable assumptions. Using the proposed method, we analyse the COVID-19 infection curves in 35 major countries and discover patterns with potentially relevant implications for effectiveness of the pandemic responses by different countries. A simple change-adaptive two-stage forecasting scheme is further designed to generate short-term prediction of COVID-19 cumulative new cases and is shown to deliver accurate forecast valuable to public health decision-making.

     
    more » « less
  5. Abstract Background

    Beginning May 7, 2022, multiple nations reported an unprecedented surge in monkeypox cases. Unlike past outbreaks, differences in affected populations, transmission mode, and clinical characteristics have been noted. With the existing uncertainties of the outbreak, real-time short-term forecasting can guide and evaluate the effectiveness of public health measures.

    Methods

    We obtained publicly available data on confirmed weekly cases of monkeypox at the global level and for seven countries (with the highest burden of disease at the time this study was initiated) from the Our World in Data (OWID) GitHub repository and CDC website. We generated short-term forecasts of new cases of monkeypox across the study areas using an ensemble n-sub-epidemic modeling framework based on weekly cases using 10-week calibration periods. We report and assess the weekly forecasts with quantified uncertainty from the top-ranked, second-ranked, and ensemble sub-epidemic models. Overall, we conducted 324 weekly sequential 4-week ahead forecasts across the models from the week of July 28th, 2022, to the week of October 13th, 2022.

    Results

    The last 10 of 12 forecasting periods (starting the week of August 11th, 2022) show either a plateauing or declining trend of monkeypox cases for all models and areas of study. According to our latest 4-week ahead forecast from the top-ranked model, a total of 6232 (95% PI 487.8, 12,468.0) cases could be added globally from the week of 10/20/2022 to the week of 11/10/2022. At the country level, the top-ranked model predicts that the USA will report the highest cumulative number of new cases for the 4-week forecasts (median based on OWID data: 1806 (95% PI 0.0, 5544.5)). The top-ranked and weighted ensemble models outperformed all other models in short-term forecasts.

    Conclusions

    Our top-ranked model consistently predicted a decreasing trend in monkeypox cases on the global and country-specific scale during the last ten sequential forecasting periods. Our findings reflect the potential impact of increased immunity, and behavioral modification among high-risk populations.

     
    more » « less