We present a Hubble Space Telescope (HST) weak gravitational lensing study of nine distant and massive galaxy clusters with redshifts 1.0 ≲ z ≲ 1.7 ( z median = 1.4) and Sunyaev Zel’dovich (SZ) detection significance ξ > 6.0 from the South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We measured weak lensing galaxy shapes in HST/ACS F 606 W and F 814 W images and used additional observations from HST/WFC3 in F 110 W and VLT/FORS2 in U HIGH to preferentially select background galaxies at z ≳ 1.8, achieving a high purity. We combined recent redshift estimates from the CANDELS/3D-HST and HUDF fields to infer an improved estimate of the source redshift distribution. We measured weak lensing masses by fitting the tangential reduced shear profiles with spherical Navarro-Frenk-White (NFW) models. We obtained the largest lensing mass in our sample for the cluster SPT-CL J2040−4451, thereby confirming earlier results that suggest a high lensing mass of this cluster compared to X-ray and SZ mass measurements. Combining our weak lensing mass constraints with results obtained by previous studies for lower redshift clusters, we extended the calibration of the scaling relation between the unbiased SZ detection significance ζ and the cluster mass for the SPT-SZ survey out to higher redshifts. We found that the mass scale inferred from our highest redshift bin (1.2 < z < 1.7) is consistent with an extrapolation of constraints derived from lower redshifts, albeit with large statistical uncertainties. Thus, our results show a similar tendency as found in previous studies, where the cluster mass scale derived from the weak lensing data is lower than the mass scale expected in a Planckν ΛCDM (i.e. ν Λ cold dark matter) cosmology given the SPT-SZ cluster number counts.
more »
« less
Criteria for projected discovery and exclusion sensitivities of counting experiments
Abstract The projected discovery and exclusion capabilities of particle physics and astrophysics/cosmology experiments are often quantified using the median expected p-value or its corresponding significance. We argue that this criterion leads to flawed results, which for example can counterintuitively project lessened sensitivities if the experiment takes more data or reduces its background. We discuss the merits of several alternatives to the median expected significance, both when the background is known and when it is subject to some uncertainty. We advocate for standard use of the “exact Asimov significance” $$Z^\mathrm{A}$$ Z A detailed in this paper.
more »
« less
- Award ID(s):
- 2013340
- PAR ID:
- 10273081
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 81
- Issue:
- 2
- ISSN:
- 1434-6044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wang, P. (Ed.)Dynamic Lot Sizing problem and its variations has been widely used for the scheduling of the productions and inventories. When demands are uncertain, one can use the mean of historical data or the expected value, which is a point estimate of demand. In addition to the mean, this work considers another point estimate, which is called median. We show that the total backorders, as the result of capacity limitation and uncertain demand, can be lower when median is used instead of the mean. It is shown that for an asymmetric distribution, the total backorder is lower significantly when median is used. Furthermore, when demand follows a symmetric distribution, the total backorder do not differ significantly between the two point estimates.more » « less
-
Abstract The large-scale universal structure comprises strands of dark matter and galaxies with large underdense volumes known as voids. We measure the fraction of the line of sight that intersects voids for active galactic nuclei (AGN) detected by Fermi Large Area Telescope (LAT) and quasars from the Sloan Digital Sky Survey (SDSS). This “voidiness” fraction is a rudimentary proxy for the density along the line of sight to the galaxies. The voidiness of SDSS-observed quasars (QSOs) is distinctly different from randomly distributed source populations, with a medianp-value of 4.6 × 10−5and ≪1 × 10−7, when compared with 500 simulated populations with randomly simulated locations but matching redshifts in the 0.1 ≤z< 0.4 and 0.4 ≤z< 0.7 intervals, respectively. A similar comparison of the voidiness for LAT-detected AGN shows medianp-values greater than 0.05 in each redshift interval. When comparing the SDSS QSO population to the LAT-detected AGN, we mitigate potential bias from a relationship between redshift and voidiness by comparing the LAT-detected AGN to a “redshift-matched” set of SDSS QSOs. The LAT-detected AGN between a redshift of 0.4 and 0.7 show higher voidiness compared to the redshift-matched SDSS QSO populations, with a medianp-value of 2.3 × 10−5(a 4.1σdeviation). No deviation is found when comparing the same populations between redshifts of 0.1 and 0.4 (p> 0.05). We do not study possible causes of this voidiness difference. It might relate to propagation effects from lower magnetic or radiative background fields within voids or to an environment more favorable for gamma-ray production for AGN near voids.more » « less
-
ABSTRACT The variability induced by precipitable water vapour (PWV) can heavily affect the accuracy of time-series photometric measurements gathered from the ground, especially in the near-infrared. We present here a novel method of modelling and mitigating this variability, as well as open-sourcing the developed tool – Umbrella. In this study, we evaluate the extent to which the photometry in three common bandpasses (r′, i′, z′), and SPECULOOS’ primary bandpass (I + z′), are photometrically affected by PWV variability. In this selection of bandpasses, the I + z′ bandpass was found to be most sensitive to PWV variability, followed by z′, i′, and r′. The correction was evaluated on global light curves of nearby late M- and L-type stars observed by SPECULOOS’ Southern Observatory (SSO) with the I + z′ bandpass, using PWV measurements from the LHATPRO and local temperature/humidity sensors. A median reduction in RMS of 1.1 per cent was observed for variability shorter than the expected transit duration for SSO’s targets. On timescales longer than the expected transit duration, where long-term variability may be induced, a median reduction in RMS of 53.8 per cent was observed for the same method of correction.more » « less
-
Abstract We present measurements ofz ∼ 2.4 ultraviolet (UV) background light using Lyαabsorption from galaxies atz ∼ 2–3 in the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) database. Thanks to the wide area of this survey, we also measure the variability of this light across the sky. The data suggest an asymmetric geometry where integrated UV light from background galaxies is absorbed by Hiwithin the halo of a foreground galaxy, in a configuration similar to damped Lyαsystems. Using stacking analyses of over 400,000 HETDEX LAE spectra, we argue that this background absorption is detectable in our data. We also argue that the absorption signal becomes negative due to HETDEX’s sky-subtraction procedure. The amount that the absorption is oversubtracted is representative of thez ∼ 2.4 UV contribution to the overall extragalactic background light (EBL) at Lyα. Using this method, we determine an average intensity (inνJνunits) of 12.9 ± 3.7 nW m−2sr−1at a median observed wavelength of 4134 Å, or a rest-frame UV background intensity of 508 ± 145 nW m−2sr−1atz ∼ 2.4. We find that this flux varies significantly depending on the density of galaxies in the field of observation. Our estimates are consistent with direct measurements of the overall EBL.more » « less
An official website of the United States government

