skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electroweak phase transition with spontaneous Z2-breaking
A bstract This work investigates a simple, representative extension of the Standard Model with a real scalar singlet and spontaneous Z 2 breaking, which allows for a strongly first-order phase transition, as required by electroweak baryogenesis. We perform analytical and numerical calculations that systematically include one-loop thermal effects, Coleman-Weinberg corrections, and daisy resummation, as well as evaluation of bubble nucleation. We study the rich thermal history and identify the conditions for a strongly first-order electroweak phase transition with nearly degenerate extrema at zero temperature. This requires a light scalar with mass below 50 GeV. Exotic Higgs decays, as well as Higgs coupling precision measurements at the LHC and future collider facilities, will test this model. Additional information may be obtained from future collider constraints on the Higgs self-coupling. Gravitational-wave signals are typically too low to be probed by future gravitational wave experiments.  more » « less
Award ID(s):
1914731
PAR ID:
10273136
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the prospects for probing the Nnaturalness solution to the electroweak hierarchy problem with future gravitational wave observatories. Nnaturalness, in its simplest incarnation, predictsNcopies of the Standard Model with varying Higgs mass parameters. We show that in certain parameter regions the scalar reheaton transfers a substantial energy density to the sector with the smallest positive Higgs squared mass while remaining consistent with bounds on additional effective relativistic species. In this sector, all six quarks are much lighter than the corresponding QCD confinement scale, allowing for the possibility of a first-order chiral symmetry-breaking phase transition and an associated stochastic gravitational wave signal. We consider several scenarios characterizing the strongly-coupled phase transition dynamics and estimate the gravitational wave spectrum for each. Pulsar timing arrays (SKA), spaced-based interferometers (BBO, Ultimate-DECIGO,μAres, asteroid ranging), and astrometric measurements (THEIA) all have the potential to explore new regions of Nnaturalness parameter space, complementing probes from next generation cosmic microwave background radiation experiments. 
    more » « less
  2. A bstract We consider gravitational sound wave signals produced by a first-order phase transition in a theory with a generic renormalizable thermal effective potential of power law form. We find the frequency and amplitude of the gravitational wave signal can be related in a straightforward manner to the parameters of the thermal effective potential. This leads to a general conclusion; if the mass of the dark Higgs is less than 1% of the dark Higgs vacuum expectation value, then the gravitational wave signal will be unobservable at all upcoming and planned gravitational wave observatories. Although the understanding of gravitational wave production at cosmological phase transitions is still evolving, we expect this result to be robust. 
    more » « less
  3. Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modeling of the expected signals in extensions of general relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss–Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to relative first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading −0.5PN order terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from general relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity. 
    more » « less
  4. A bstract We propose a simple modification of the Goldberger-Wise mechanism for stabilizing the scale of spontaneously broken conformal theories. The source of explicit conformal symmetry breaking is a relevant operator with a small coefficient, as opposed to the usual mechanism of an almost marginal operator with an order-one coefficient. In the warped 5D picture this relevant stabilization corresponds to a small tadpole for the bulk scalar on the UV brane, which can be technically natural if it is the only source for the breaking of a symmetry (for example, a discrete Z 2 ). This modification of the stabilization mechanism has significant consequences for the nature of the conformal phase transition, since the radion/dilaton potential is no longer shallow. The bounce action is significantly reduced, leading to a weaker first-order phase transition instead of the supercooled and strongly first-order transition seen in Goldberger-Wise stabilization. This also leads to reduction of gravitational wave signals which, however, may still be observable at future detectors. We present numerical and analytical studies of the phase transition and the resulting gravitational wave signal strength, assuming that the effective dilaton potential provides a good leading approximation. While the dilaton is not expected to be generically light in this setup, in order to keep perturbative control over the effective theory one needs to mildly tune the dilaton quartic to be somewhat small. 
    more » « less
  5. A bstract Electroweak baryogenesis (EWBG) offers a compelling narrative for the generation of the baryon asymmetry, however it cannot be realised in the Standard Model, and leads to severe experimental tensions in the Minimal Supersymmetric Standard Model (MSSM). One of the reasons for these experimental tensions is that in traditional approaches to EWBG new physics is required to enter at the electroweak phase transition, which conventionally is fixed near 100 GeV. Here we demonstrate that the addition of sub-TeV fields in supersymmetric extensions of the Standard Model permits TeV-scale strongly first-order electroweak phase transition. While earlier literature suggested no-go arguments with regards to high-temperature symmetry breaking in supersymmetric models, we show these can be evaded by employing a systematic suppression of certain thermal corrections in theories with a large number of states. The models presented push the new physics needed for EWBG to higher scales, hence presenting new parameter regions in which to realize EWBG and evade experimental tensions, however they are not expected to render EWBG completely outside of the foreseeable future experimental reach. 
    more » « less