We explore the mechanisms by which Arctic sea ice decline affects the Atlantic meridional overturning circulation (AMOC) in a suite of numerical experiments perturbing the Arctic sea ice radiative budget within a fully coupled climate model. The imposed perturbations act to increase the amount of heat available to melt ice, leading to a rapid Arctic sea ice retreat within 5 years after the perturbations are activated. In response, the AMOC gradually weakens over the next ~100 years. The AMOC changes can be explained by the accumulation in the Arctic and subsequent downstream propagation to the North Atlantic of buoyancy anomalies controlled by temperature and salinity. Initially, during the first decade or so, the Arctic sea ice loss results in anomalous positive heat and salinity fluxes in the subpolar North Atlantic, inducing positive temperature and salinity anomalies over the regions of oceanic deep convection. At first, these anomalies largely compensate one another, leading to a minimal change in upper ocean density and deep convection in the North Atlantic. Over the following years, however, more anomalous warm water accumulates in the Arctic and spreads to the North Atlantic. At the same time, freshwater that accumulates from seasonal sea ice melting over most of the upper Arctic Ocean also spreads southward, reaching as far as south of Iceland. These warm and fresh anomalies reduce upper ocean density and suppress oceanic deep convection. The thermal and haline contributions to these buoyancy anomalies, and therefore to the AMOC slowdown during this period, are found to have similar magnitudes. We also find that the related changes in horizontal wind-driven circulation could potentially push freshwater away from the deep convection areas and hence strengthen the AMOC, but this effect is overwhelmed by mean advection.
more »
« less
AMOC stability and diverging response to Arctic sea ice decline in two climate models
Abstract This study compares the impacts of Arctic sea ice decline on the Atlantic Meridional Overturning Circulation (AMOC) in two configurations of the Community Earth System Model (CESM) with different horizontal resolution. In a suite of model experiments we impose radiative imbalance at the ice surface, replicating a loss of sea ice cover comparable to the observed during 1979-2014, and find dramatic differences in the AMOC response between the two models. In the lower-resolution configuration, the AMOC weakens by about one third over the first 100 years, approaching a new quasi-equilibrium. By contrast, in the higher-resolution configuration, the AMOC weakens by ~10% during the first 20-30 years followed by a full recovery driven by invigorated deep water formation in the Labrador Sea and adjacent regions. We investigate these differences using a diagnostic AMOC stability indicator, which reflects the AMOC freshwater transport in and out of the basin and hence the strength of the basin-scale salt-advection feedback. This indicator suggests that the AMOC in the lower-resolution model is less stable and more sensitive to surface perturbations, as confirmed by hosing experiments mimicking Arctic freshening due to sea ice decline. Differences between the models’ mean states, including the Atlantic mean surface freshwater fluxes, control the differences in AMOC stability. Our results demonstrate that the AMOC stability indicator is indeed useful for evaluating AMOC sensitivity to perturbations. Finally, we emphasize that, despite the differences in the long-term adjustment, both models simulate a multi-decadal AMOC weakening caused by Arctic sea ice decline, relevant to climate change.
more »
« less
- PAR ID:
- 10273199
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1 to 47
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the impact of Arctic sea ice loss on the Atlantic meridional overturning circulation (AMOC) and North Atlantic climate in a coupled general circulation model (IPSL‐CM5A2) perturbation experiment, wherein Arctic sea ice is reduced until reaching an equilibrium of an ice‐free summer. After several decades we observe AMOC weakening caused by reduced dense water formation in the Iceland basin due to the warming of surface waters, and later compensated by intensification of dense water formation in the Western Subpolar North Atlantic. Consequently, AMOC slightly weakens in deep, dense waters but recovers through shallower, less dense waters overturning. In parallel, wind‐driven intensification and southeastward expansion of the subpolar gyre cause a depth‐extended cold anomaly ∼2°C around 50°N that resembles the North Atlantic “warming hole.” We conclude that compensating dense water formations drive AMOC changes following sea ice retreat and that a warming hole can develop independently of the AMOC modulation.more » « less
-
A widespread theory in paleoclimatology suggests that changes in freshwater discharge to the Nordic (Greenland, Norwegian, and Icelandic) Seas from ice sheets and proglacial lakes over North America played a role in triggering episodes of abrupt climate change during deglaciation (21–8 ka) by slowing the strength of the Atlantic Meridional Overturning circulation (AMOC). Yet, proving this link has been problematic, as climate models are unable to produce centennial-to-millennial–length reductions in overturning from short-lived outburst floods, while periods of iceberg discharge during Heinrich Event 1 (ca. 16 ka) may have occurred after the climate had already begun to cool. Here, results from a series of numerical model experiments are presented to show that prior to deglaciation, sea ice could have become tens of meters thick over large parts of the Arctic Basin, forming an enormous reservoir of freshwater independent from terrestrial sources. Our model then shows that deglacial sea-level rise, changes in atmospheric circulation, and terrestrial outburst floods caused this ice to be exported through Fram Strait, where its subsequent melt freshened the Nordic Seas enough to weaken the AMOC. Given that both the volume of ice stored in the Arctic Basin and the magnitude of the simulated export events exceed estimates of the volumes and fluxes of meltwater periodically discharged from proglacial Lake Agassiz, our results show that non-terrestrial freshwater sources played an important role in causing past abrupt climate change.more » « less
-
While the Atlantic Meridional Overturning Circulation (AMOC) is projected to slow down under anthropogenic warming, the exact role of the AMOC in future climate change has not been fully quantified. Here, we present a method to stabilize the AMOC intensity in anthropogenic warming experiments by removing fresh water from the subpolar North Atlantic. This method enables us to isolate the AMOC climatic impacts in experiments with a full-physics climate model. Our results show that a weakened AMOC can explain ocean cooling south of Greenland that resembles the North Atlantic warming hole and a reduced Arctic sea ice loss in all seasons with a delay of about 6 years in the emergence of an ice-free Arctic in boreal summer. In the troposphere, a weakened AMOC causes an anomalous cooling band stretching from the lower levels in high latitudes to the upper levels in the tropics and displaces the Northern Hemisphere midlatitude jets poleward.more » « less
-
Abstract The Arctic sea ice has been rapidly dwindling over the past four decades, significantly impacting the Arctic region and beyond. During the same period, the Atlantic meridional overturning circulation (AMOC) was also found in a declining trend. Here we investigate the role of the AMOC in the recent Arctic sea ice changes by comparing simulations from the Community Climate System Model version 4 with decelerated and stationary AMOCs under anthropogenic climate change. We find that the weakened AMOC can slow down the decline rates of Arctic sea ice area and volume by 36% and 22% between 1980 and 2020, respectively. The decelerated ocean circulation causes a reduction of northward Atlantic heat transport and hence a general interior ocean cooling in the Arctic Mediterranean, which helps alleviate the Arctic sea ice loss primarily through thermodynamic processes occurring at the base of the sea ice.more » « less
An official website of the United States government

