While the Atlantic Meridional Overturning Circulation (AMOC) is projected to slow down under anthropogenic warming, the exact role of the AMOC in future climate change has not been fully quantified. Here, we present a method to stabilize the AMOC intensity in anthropogenic warming experiments by removing fresh water from the subpolar North Atlantic. This method enables us to isolate the AMOC climatic impacts in experiments with a full-physics climate model. Our results show that a weakened AMOC can explain ocean cooling south of Greenland that resembles the North Atlantic warming hole and a reduced Arctic sea ice loss in all seasons with a delay of about 6 years in the emergence of an ice-free Arctic in boreal summer. In the troposphere, a weakened AMOC causes an anomalous cooling band stretching from the lower levels in high latitudes to the upper levels in the tropics and displaces the Northern Hemisphere midlatitude jets poleward.
more »
« less
Slowdown and Recovery of the Atlantic Meridional Overturning Circulation and a Persistent North Atlantic Warming Hole Induced by Arctic Sea Ice Decline
Abstract We investigate the impact of Arctic sea ice loss on the Atlantic meridional overturning circulation (AMOC) and North Atlantic climate in a coupled general circulation model (IPSL‐CM5A2) perturbation experiment, wherein Arctic sea ice is reduced until reaching an equilibrium of an ice‐free summer. After several decades we observe AMOC weakening caused by reduced dense water formation in the Iceland basin due to the warming of surface waters, and later compensated by intensification of dense water formation in the Western Subpolar North Atlantic. Consequently, AMOC slightly weakens in deep, dense waters but recovers through shallower, less dense waters overturning. In parallel, wind‐driven intensification and southeastward expansion of the subpolar gyre cause a depth‐extended cold anomaly ∼2°C around 50°N that resembles the North Atlantic “warming hole.” We conclude that compensating dense water formations drive AMOC changes following sea ice retreat and that a warming hole can develop independently of the AMOC modulation.
more »
« less
- Award ID(s):
- 2053096
- PAR ID:
- 10371778
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 16
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Atlantic Meridional Overturning Circulation (AMOC), a key mechanism in the climate system, delivers warm and salty waters from the subtropical gyre to the subpolar gyre and Nordic Seas, where they are transformed into denser waters flowing southward in the lower AMOC limb. The prevailing hypothesis is that dense waters formed in the Labrador and Nordic Seas are the sources for the AMOC lower limb. However, recent observations reveal that convection in the Labrador Sea contributes minimally to the total overturning of the subpolar gyre. In this study, we show that the AMOC is instead primarily composed of waters formed in the Nordic Seas and Irminger and Iceland basins. A first direct estimate of heat and freshwater fluxes over these basins demonstrates that buoyancy forcing during the winter months can almost wholly account for the dense waters of the subpolar North Atlantic that are exported as part of the AMOC.more » « less
-
Abstract Winter surface air temperature (Tas) over the Barents–Kara Seas (BKS) and other Arctic regions has experienced rapid warming since the late 1990s that has been linked to the concurring cooling over Eurasia, and these multidecadal trends are attributed partly to internal variability. However, how such variability is generated is unclear. Through analyses of observations and model simulations, we show that sea ice–air two-way interactions amplify multidecadal variability in sea-ice cover, sea surface temperatures (SST) and Tas from the North Atlantic to BKS, and the Atlantic Meridional Overturning Circulation (AMOC) mainly through variations in surface fluxes. When sea ice is fixed in flux calculations, multidecadal variations are reduced substantially (by 20–50%) not only in Arctic Tas, but also in North Atlantic SST and AMOC. The results suggest that sea ice–air interactions are crucial for multidecadal climate variability in both the Arctic and North Atlantic, similar to air-sea interactions for tropical climate.more » « less
-
We explore the mechanisms by which Arctic sea ice decline affects the Atlantic meridional overturning circulation (AMOC) in a suite of numerical experiments perturbing the Arctic sea ice radiative budget within a fully coupled climate model. The imposed perturbations act to increase the amount of heat available to melt ice, leading to a rapid Arctic sea ice retreat within 5 years after the perturbations are activated. In response, the AMOC gradually weakens over the next ~100 years. The AMOC changes can be explained by the accumulation in the Arctic and subsequent downstream propagation to the North Atlantic of buoyancy anomalies controlled by temperature and salinity. Initially, during the first decade or so, the Arctic sea ice loss results in anomalous positive heat and salinity fluxes in the subpolar North Atlantic, inducing positive temperature and salinity anomalies over the regions of oceanic deep convection. At first, these anomalies largely compensate one another, leading to a minimal change in upper ocean density and deep convection in the North Atlantic. Over the following years, however, more anomalous warm water accumulates in the Arctic and spreads to the North Atlantic. At the same time, freshwater that accumulates from seasonal sea ice melting over most of the upper Arctic Ocean also spreads southward, reaching as far as south of Iceland. These warm and fresh anomalies reduce upper ocean density and suppress oceanic deep convection. The thermal and haline contributions to these buoyancy anomalies, and therefore to the AMOC slowdown during this period, are found to have similar magnitudes. We also find that the related changes in horizontal wind-driven circulation could potentially push freshwater away from the deep convection areas and hence strengthen the AMOC, but this effect is overwhelmed by mean advection.more » « less
-
Abstract Despite global warming, the sea surface temperature (SST) in the subpolar North Atlantic has decreased since the 1900s. This local cooling, known as the North Atlantic cold blob, signifies a unique role of the subpolar North Atlantic in uptaking heat and hence impacts downstream weather and climate. However, a lack of observational records and their constraints on climate models leave the North Atlantic cold blob formation mechanism inconclusive. Using simulations from phase 6 of Coupled Model Intercomparison Project, we assess the primary processes driving the North Atlantic cold blob within individual models and whether the mechanisms are consistent across models. We show that 11 out of 32 models, which we call “Cold Blob” models, simulate the subpolar North Atlantic cooling over 1900–2014. Further analyzing the heat budget of the subpolar North Atlantic SST shows that models have distinct mechanisms of cold blob formation. While 4 of the 11 Cold Blob models indicate decreased oceanic heat transport convergence (OHTC) as the key mechanism, another four models suggest changes in radiative processes making predominant contributions. The contribution of OHTC and radiative processes is comparable in the remaining three models. Such a model disagreement on the mechanism of cold blob formation may be associated with simulated base-state Atlantic meridional overturning circulation (AMOC) strength, which explains 39% of the intermodel spread in the contribution of OHTC to the simulated cold blob. Models with a stronger base-state AMOC suggest a greater role of OHTC, whereas those with a weaker base-state AMOC indicate that radiative processes are more responsible. This model discrepancy suggests that the cold blob formation mechanism diagnosed from single model should be interpreted with caution. Significance StatementThe mechanisms driving sea surface temperatures over the subpolar North Atlantic to cool since the 1900s remain uncertain due to the lack of direct observations. Here, we use a temperature change decomposition framework to dissect the historical trend of surface temperature simulated in multiple global climate models. The models diverge on whether the subpolar North Atlantic cooling is induced by reduced ocean heat transport convergence or altered radiative processes. Notably, the importance of ocean heat transport convergence is influenced by the simulated base-state strength of Atlantic meridional overturning circulation and the Irminger Sea’s mixed layer depth. This finding cautions against concluding the cooling mechanism from a single model and highlights a need for ongoing observations to constrain AMOC-related climate projection in the subpolar North Atlantic.more » « less