skip to main content


Title: Identifying the Thematic Trends of Model Based Systems Engineering in Manufacturing and Production Engineering Domains
Manufacturing and production systems have become increasingly complex in the past decade to meet the competitive demand in a growing industry. As these systems grow in complexity and flexibility, there is a need for efficient management and analysis of these systems. Model-based systems engineering (MBSE) addresses the complexity inherent with systems development with a model-centric approach that supported tailored modeling languages, methods and tools. This paper identifies the thematic evolution and trends and relationships found in the use and application of MBSE specifically in the manufacturing and production engineering domain. A collection of 471 published article from Institute of Electrical and Electronics Engineers (IEEE) and Science Direct over the past decade were used for the analysis using text mining techniques. Due to the limitation on the access to full text information of all the articles identified, only abstracts were considered for analysis. This effort helps the researchers across the domain to explore the reason behind and understand the change of the thematic perspectives of MBSE application over the last decade. In addition, the finding of the growing interest in addressing the aspects of complexity and systems requirements, and on the aspects of the use of MBSE for identifying and addressing the challenges related to Cyber Physical Systems help in paving a path for future research.  more » « less
Award ID(s):
1952634
NSF-PAR ID:
10273261
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE International Systems Conference (SysCon)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    An observed increase in systems scale and complexity has led to a significant momentum in exploring, identifying, and adopting model based systems engineering (MBSE) tools and techniques amongst research communities and industry practitioners. Several attempts to transform systems design and engineering practices through the use of MBSE in academia and industry has led to a considerable increase in the number of articles published containing the keyword “MBSE.” This growth serves as the motivation in this paper to explore the MBSE landscape with the help of text mining techniques to identify the most often used key terms, tools, and languages, in the context of research in MBSE and the thematic aspects defining the use of MBSE by researchers and practitioners. The objective of this paper is to provide a structured comprehensive overview of research contributions across the MBSE landscape by employing text mining techniques for: (a) identifying the concepts and methodologies inferred upon in relation to MBSE, and (b) classifying the literature published to identify commonalities across academic researchers and practitioners using MBSE tools and methods. For this purpose, the abstracts of 2380 relevant articles published in the period of the last two decades from five different databases are mined. It is found that the terms “SysML,” “Cyber Physical Systems,” and “Production” are the most used terms among researchers across the MBSE landscape with SysML being the most widely used modeling language. Further, six major thematic topics are identified that classify articles from over the last two decades with an increasing interest observed in the use of MBSE to support manufacturing and production engineering activities, especially in the cyber physical systems domain. The contributions of this paper provide a leeway on using text mining techniques to understand the research directions that are currently of interest in the field of MBSE and thereby identify potential future research directions. 
    more » « less
  2. null (Ed.)
    Increasing complexity in today’s manufacturing and production industry due to the need for higher flexibility and competitiveness is leading to inconsistencies in the iterative exchange loops of the system design process. To address these complexities and inconsistencies, an ongoing industry trend for organizations to make a transition from document-centric principles and applications to being model-centric is observed. In this paper, a literature review is presented highlighting the current need for an industry-wide transition from document-centric systems engineering to Model-Based Systems Engineering (MBSE). Further, investigating the tools and languages used by the researchers for facilitating the transition to and the integration of MBSE approach, we identify the most commonly used tools and languages to highlight the applicability of MBSE in the manufacturing and production industry. 
    more » « less
  3. Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per case with one report per case. The data is organized by tissue type as shown below: Filenames: tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_0a001_00123456_lvl0001_s000.svs tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_00123456.docx Explanation: tudp: root directory of the corpus v1.0.0: version number of the release svs: the image data type gastro: the type of tissue 000001: six-digit sequence number used to control directory complexity 00123456: 8-digit patient MRN 2015_03_05: the date the specimen was captured 0s15_12345: the clinical case name 0s15_12345_0a001_00123456_lvl0001_s000.svs: the actual image filename consisting of a repeat of the case name, a site code (e.g., 0a001), the type and depth of the cut (e.g., lvl0001) and a token number (e.g., s000) 0s15_12345_00123456.docx: the filename for the corresponding case report We currently recognize fifteen tissue types in the first installment of the corpus. The raw image data is stored in Aperio’s “.svs” format, which is a multi-layered compressed JPEG format [3,7]. Pathology reports containing a summary of how a pathologist interpreted the slide are also provided in a flat text file format. A more complete summary of the demographics of this pilot corpus will be presented at the conference. Another goal of this poster presentation is to share our experiences with the larger community since many of these details have not been adequately documented in scientific publications. There are quite a few obstacles in collecting this data that have slowed down the process and need to be discussed publicly. Our backlog of slides dates back to 1997, meaning there are a lot that need to be sifted through and discarded for peeling or cracking. Additionally, during scanning a slide can get stuck, stalling a scan session for hours, resulting in a significant loss of productivity. Over the past two years, we have accumulated significant experience with how to scan a diverse inventory of slides using the Aperio AT2 high-volume scanner. We have been working closely with the vendor to resolve many problems associated with the use of this scanner for research purposes. This scanning project began in January of 2018 when the scanner was first installed. The scanning process was slow at first since there was a learning curve with how the scanner worked and how to obtain samples from the hospital. From its start date until May of 2019 ~20,000 slides we scanned. In the past 6 months from May to November we have tripled that number and how hold ~60,000 slides in our database. This dramatic increase in productivity was due to additional undergraduate staff members and an emphasis on efficient workflow. The Aperio AT2 scans 400 slides a day, requiring at least eight hours of scan time. The efficiency of these scans can vary greatly. When our team first started, approximately 5% of slides failed the scanning process due to focal point errors. We have been able to reduce that to 1% through a variety of means: (1) best practices regarding daily and monthly recalibrations, (2) tweaking the software such as the tissue finder parameter settings, and (3) experience with how to clean and prep slides so they scan properly. Nevertheless, this is not a completely automated process, making it very difficult to reach our production targets. With a staff of three undergraduate workers spending a total of 30 hours per week, we find it difficult to scan more than 2,000 slides per week using a single scanner (400 slides per night x 5 nights per week). The main limitation in achieving this level of production is the lack of a completely automated scanning process, it takes a couple of hours to sort, clean and load slides. We have streamlined all other aspects of the workflow required to database the scanned slides so that there are no additional bottlenecks. To bridge the gap between hospital operations and research, we are using Aperio’s eSM software. Our goal is to provide pathologists access to high quality digital images of their patients’ slides. eSM is a secure website that holds the images with their metadata labels, patient report, and path to where the image is located on our file server. Although eSM includes significant infrastructure to import slides into the database using barcodes, TUH does not currently support barcode use. Therefore, we manage the data using a mixture of Python scripts and manual import functions available in eSM. The database and associated tools are based on proprietary formats developed by Aperio, making this another important point of community-wide discussion on how best to disseminate such information. Our near-term goal for the TUDP Corpus is to release 100,000 slides by December 2020. We hope to continue data collection over the next decade until we reach one million slides. We are creating two pilot corpora using the first 50,000 slides we have collected. The first corpus consists of 500 slides with a marker stain and another 500 without it. This set was designed to let people debug their basic deep learning processing flow on these high-resolution images. We discuss our preliminary experiments on this corpus and the challenges in processing these high-resolution images using deep learning in [3]. We are able to achieve a mean sensitivity of 99.0% for slides with pen marks, and 98.9% for slides without marks, using a multistage deep learning algorithm. While this dataset was very useful in initial debugging, we are in the midst of creating a new, more challenging pilot corpus using actual tissue samples annotated by experts. The task will be to detect ductal carcinoma (DCIS) or invasive breast cancer tissue. There will be approximately 1,000 images per class in this corpus. Based on the number of features annotated, we can train on a two class problem of DCIS or benign, or increase the difficulty by increasing the classes to include DCIS, benign, stroma, pink tissue, non-neoplastic etc. Those interested in the corpus or in participating in community-wide discussions should join our listserv, nedc_tuh_dpath@googlegroups.com, to be kept informed of the latest developments in this project. You can learn more from our project website: https://www.isip.piconepress.com/projects/nsf_dpath. 
    more » « less
  4. Model-Based Systems Engineering (MBSE) supports the development of complex systems through capturing, communicating, and managing system specifications with an emphasis on the use of modeling languages, tools, and methods. It is a well-known fact that varying levels of effort are required to implement MBSE in industries based on the complexity of the systems a given industry is associated with. This paper shares the results of a survey to industry professionals from Defense, Aerospace, Automotive, Consultancy, Software, and IT industry clusters. The research goal is to understand the current state of perception on what MBSE is and the use of MBSE among different industry clusters. The survey analysis includes a comparison of how MBSE is defined, advantages on the use of MBSE, project types, specific life cycle stage when MBSE is applied, and adoption challenges, as reported by the survey participants. The researchers also aim to trigger discussions in the MBSE community for identifying strategies to address MBSE related challenges tailored to a specific industry type. 
    more » « less
  5. A digital twin (DT) is an interactive, real-time digital representation of a system or a service utilizing onboard sensor data and Internet of Things (IoT) technology to gain a better insight into the physical world. With the increasing complexity of systems and products across many sectors, there is an increasing demand for complex systems optimization. Digital twins vary in complexity and are used for managing the performance, health, and status of a physical system by virtualizing it. The creation of digital twins enabled by Modelbased Systems Engineering (MBSE) has aided in increasing system interconnectivity and simplifying the system optimization process. More specifically, the combination of MBSE languages, tools, and methods has served as a starting point in developing digital twins. This article discusses how MBSE has previously facilitated the development of digital twins across various domains, emphasizing both the benefits and disadvantages of adopting an MBSE enabled digital twin creation. Further, the article expands on how various levels of digital twins were generated via the use of MBSE. An MBSE enabled conceptual framework for developing digital twins is identified that can be used as a research testbed for developing digital twins and optimizing systems and system of systems. Keywords—MBSE, Digital Twin, Digital Shadow, Digital Model, SysML 
    more » « less