skip to main content

This content will become publicly available on September 6, 2022

Title: Model based systems engineering—A text mining based structured comprehensive overview
An observed increase in systems scale and complexity has led to a significant momentum in exploring, identifying, and adopting model based systems engineering (MBSE) tools and techniques amongst research communities and industry practitioners. Several attempts to transform systems design and engineering practices through the use of MBSE in academia and industry has led to a considerable increase in the number of articles published containing the keyword “MBSE.” This growth serves as the motivation in this paper to explore the MBSE landscape with the help of text mining techniques to identify the most often used key terms, tools, and languages, in the context of research in MBSE and the thematic aspects defining the use of MBSE by researchers and practitioners. The objective of this paper is to provide a structured comprehensive overview of research contributions across the MBSE landscape by employing text mining techniques for: (a) identifying the concepts and methodologies inferred upon in relation to MBSE, and (b) classifying the literature published to identify commonalities across academic researchers and practitioners using MBSE tools and methods. For this purpose, the abstracts of 2380 relevant articles published in the period of the last two decades from five different databases are mined. It more » is found that the terms “SysML,” “Cyber Physical Systems,” and “Production” are the most used terms among researchers across the MBSE landscape with SysML being the most widely used modeling language. Further, six major thematic topics are identified that classify articles from over the last two decades with an increasing interest observed in the use of MBSE to support manufacturing and production engineering activities, especially in the cyber physical systems domain. The contributions of this paper provide a leeway on using text mining techniques to understand the research directions that are currently of interest in the field of MBSE and thereby identify potential future research directions. « less
Authors:
;
Award ID(s):
1952634
Publication Date:
NSF-PAR ID:
10294267
Journal Name:
Systems Engineering
ISSN:
1098-1241
Sponsoring Org:
National Science Foundation
More Like this
  1. Manufacturing and production systems have become increasingly complex in the past decade to meet the competitive demand in a growing industry. As these systems grow in complexity and flexibility, there is a need for efficient management and analysis of these systems. Model-based systems engineering (MBSE) addresses the complexity inherent with systems development with a model-centric approach that supported tailored modeling languages, methods and tools. This paper identifies the thematic evolution and trends and relationships found in the use and application of MBSE specifically in the manufacturing and production engineering domain. A collection of 471 published article from Institute of Electricalmore »and Electronics Engineers (IEEE) and Science Direct over the past decade were used for the analysis using text mining techniques. Due to the limitation on the access to full text information of all the articles identified, only abstracts were considered for analysis. This effort helps the researchers across the domain to explore the reason behind and understand the change of the thematic perspectives of MBSE application over the last decade. In addition, the finding of the growing interest in addressing the aspects of complexity and systems requirements, and on the aspects of the use of MBSE for identifying and addressing the challenges related to Cyber Physical Systems help in paving a path for future research.« less
  2. Researchers, evaluators and designers from an array of academic disciplines and industry sectors are turning to participatory approaches as they seek to understand and address complex social problems. We refer to participatory approaches that collaboratively engage/ partner with stakeholders in knowledge creation/problem solving for action/social change outcomes as collaborative change research, evaluation and design (CCRED). We further frame CCRED practitioners by their desire to move beyond knowledge creation for its own sake to implementation of new knowledge as a tool for social change. In March and May of 2018, we conducted a literature search of multiple discipline-specific databases seeking collaborative,more »change-oriented scholarly publications. The search was limited to include peerreviewed journal articles, with English language abstracts available, published in the last five years. The search resulted in 526 citations, 236 of which met inclusion criteria. Though the search was limited to English abstracts, all major geographic regions (North America, Europe, Latin America/Caribbean, APAC, Africa and the Middle East) were represented within the results, although many articles did not state a specific region. Of those identified, most studies were located in North America, with the Middle East having only one identified study. We followed a qualitative thematic synthesis process to examine the abstracts of peer-reviewed articles to identify practices that transcend individual disciplines, sectors and contexts to achieve collaborative change. We surveyed the terminology used to describe CCRED, setting, content/topic of study, type of collaboration, and related benefits/outcomes in order to discern the words used to designate collaboration, the frameworks, tools and methods employed, and the presence of action, evaluation or outcomes. Forty-three percent of the reviewed articles fell broadly within the social sciences, followed by 26 percent in education and 25 percent in health/medicine. In terms of participants and/ or collaborators in the articles reviewed, the vast majority of the 236 articles (86%) described participants, that is, those who the research was about or from whom data was collected. In contrast to participants, partners/collaborators (n=32; 14%) were individuals or groups who participated in the design or implementation of the collaborative change effort described. In terms of the goal for collaboration and/or for doing the work, the most frequently used terminology related to some aspect of engagement and empowerment. Common descriptors for the work itself were ‘social change’ (n=74; 31%), ‘action’ (n=33; 14%), ‘collaborative or participatory research/practice’ (n=13; 6%), ‘transformation’ (n=13; 6%) and ‘community engagement’ (n=10; 4%). Of the 236 articles that mentioned a specific framework or approach, the three most common were some variation of Participatory Action Research (n=30; 50%), Action Research (n=40; 16.9%) or Community-Based Participatory Research (n=17; 7.2%). Approximately a third of the 236 articles did not mention a specific method or tool in the abstract. The most commonly cited method/tool (n=30; 12.7%) was some variation of an arts-based method followed by interviews (n=18; 7.6%), case study (n=16; 6.7%), or an ethnographic-related method (n=14; 5.9%). While some articles implied action or change, only 14 of the 236 articles (6%) stated a specific action or outcome. Most often, the changes described were: the creation or modification of a model, method, process, framework or protocol (n=9; 4%), quality improvement, policy change and social change (n=8; 3%), or modifications to education/training methods and materials (n=5; 2%). The infrequent use of collaboration as a descriptor of partner engagement, coupled with few reported findings of measurable change, raises questions about the nature of CCRED. It appears that conducting CCRED is as complex an undertaking as the problems that the work is attempting to address.« less
  3. In recent years, driven by Industry 4.0 wave, academic research has focused on the science, engineering, and enabling technologies for intelligent and cyber manufacturing. Using a network science and data mining-based Keyword Co-occurrence Network (KCN) methodology, this work analyzes the trends in data science topics in the manufacturing literature over the past two decades to inform the researchers, educators, industry leaders of knowledge trends in intelligent manufacturing. It studies the evolution of research topics and methods in data science, Internet of Things (IoT), cloud computing, and cyber manufacturing. The KCN methodology is applied to systematically analyze the keywords collected frommore »84,041 papers published in top-tier manufacturing journals between 2000 and 2020. It is not practically feasible to review this large body of literature through tradition manual approaches like systematic review and scoping review to discover insights. The results of network modeling and data analysis reveal important knowledge components and structure of the intelligent and cyber manufacturing literature, implicit the research interests switch and provide the insights for industry development. This paper maps the high frequency keywords in the recent literature to nine pillars of Industry 4.0 to help manufacturing community identify research and education directions for emerging technologies in intelligent manufacturing.« less
  4. In recent years, driven by Industry 4.0 wave, academic research has focused on the science, engineering, and enabling technologies for intelligent and cyber manufacturing. Using a network science and data mining-based Keyword Co-occurrence Network (KCN) methodology, this work analyzes the trends in data science topics in the manufacturing literature over the past two decades to inform the researchers, educators, industry leaders of knowledge trends in intelligent manufacturing. It studies the evolution of research topics and methods in data science, Internet of Things (IoT), cloud computing, and cyber manufacturing. The KCN methodology is applied to systematically analyze the keywords collected frommore »84,041 papers published in top-tier manufacturing journals between 2000 and 2020. It is not practically feasible to review this large body of literature through tradition manual approaches like systematic review and scoping review to discover insights. The results of network modeling and data analysis reveal important knowledge components and structure of the intelligent and cyber manufacturing literature, implicit the research interests switch and provide the insights for industry development. This paper maps the high frequency keywords in the recent literature to nine pillars of Industry 4.0 to help manufacturing community identify research and education directions for emerging technologies in intelligent manufacturing.« less
  5. Purpose The architecture, engineering and construction (AEC) industry exists in a dynamic environment and requires several stakeholders to communicate regularly. However, evidence indicates current communication practices fail to meet the requirements of increasingly complex projects. With the advent of Industry 4.0, a trend is noted to create a digital communication environment between stakeholders. Identified as a central technology in Industry 4.0, virtual reality (VR) has the potential to supplement current communication and facilitate the digitization of the AEC industry. This paper aims to explore how VR has been applied and future research directions for communication purpose. Design/methodology/approach This research followsmore »a systematic literature assessment methodology to summarize the results of 41 research articles in the last 15 years and outlines the applications of VR in facilitating communication in the AEC domain. Findings Relevant VR applications are mainly found in building inspection, facility management, safety training, construction education and design and review. Communication tools and affordance are provided or built in several forms: text-based tools, voice chat tool, visual sharing affordance and avatars. Objective and subjective communication assessments are observed from those publications. Originality/value This review contributes to identifying the recent employment areas and future research directions of VR to facilitate communication in the AEC domain. The outcome can be a practical resource to guide both industry professionals and researchers to recognize the potentials of VR and will ultimately facilitate the creation of digital construction environments.« less