skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cache-Aided General Linear Function Retrieval
Coded Caching, proposed by Maddah-Ali and Niesen (MAN), has the potential to reduce network traffic by pre-storing content in the users’ local memories when the network is underutilized and transmitting coded multicast messages that simultaneously benefit many users at once during peak-hour times. This paper considers the linear function retrieval version of the original coded caching setting, where users are interested in retrieving a number of linear combinations of the data points stored at the server, as opposed to a single file. This extends the scope of the authors’ past work that only considered the class of linear functions that operate element-wise over the files. On observing that the existing cache-aided scalar linear function retrieval scheme does not work in the proposed setting, this paper designs a novel coded caching scheme that outperforms uncoded caching schemes that either use unicast transmissions or let each user recover all files in the library.  more » « less
Award ID(s):
2007108 1910309
PAR ID:
10273278
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Entropy
Volume:
23
Issue:
1
ISSN:
1099-4300
Page Range / eLocation ID:
25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the shared-link coded caching problem, formulated by Maddah-Ali and Niesen (MAN), each cache-aided user demands one file (i.e., single file retrieval). This paper generalizes the MAN problem so as to allow users to request scalar linear functions (aka, linear combinations with scalar coefficients) of the files. We propose a novel coded delivery scheme, based on MAN uncoded cache placement, that allows for the decoding of arbitrary scalar linear functions of the files on arbitrary finite fields. Surprisingly, it is shown that the load for cache-aided scalar linear function retrieval depends on the number of linearly independent functions that are demanded, akin to the cache-aided single-file retrieval problem where the load depends on the number of distinct file requests. The proposed scheme is proved to be optimal under the constraint of uncoded cache placement, in terms of worst-case load, and within a factor 2 otherwise. 
    more » « less
  2. In the coded caching literature, the notion of privacy is considered only against demands. On the motivation that multi-round transmissions almost appear everywhere in real communication systems, this paper formulates the coded caching problem with private demands and caches. Only one existing private caching scheme, which is based on introducing virtual users, can preserve the privacy of demands and caches simultaneously, but at the cost of an extremely large subpacketization exponential in the product of the number of users (K) and files (N) in the system. In order to reduce the subpacketization while satisfying the privacy constraints, we propose a novel approach which constructs private coded caching schemes through private information retrieval (PIR). Based on this approach, we propose novel schemes with private demands and caches which have a subpacketization level in the order exponential with K instead of NK in the virtual user scheme. As a by-product, for the coded caching problem with private demands, a private coded caching scheme could be obtained from the proposed approach, which generally improves the memory-load tradeoff of the private coded caching scheme by Yan and Tuninetti. 
    more » « less
  3. Caching is a technique to reduce the communication load in peak hours by prefetching contents during off-peak hours. Recently Maddah-Ali and Niesen introduced an information theoretic framework for coded caching, and showed that significant improvement can be obtained compared to uncoded caching. Considerable efforts have been devoted to identify the precise information theoretic fundamental limit of such systems, however the difficulty of this task has also become clear. One of the reasons for this difficulty is that the original coded caching setting allows multiple demand types during delivery, which in fact introduces tension in the coding strategy to accommodate all of them. In this paper, we seek to develop a better understanding of the fundamental limit of coded caching by investigating single demand type systems. We first show that in the canonical three-user three-file systems, such single demand type systems already provide important insights. Motivated by these findings, we focus on systems where the number of users and the number of files are the same, and the demand type is when all files are being requested. A novel coding scheme is proposed, which provides several optimal memory-transmission operating points. Outer bounds for this class of systems are also considered, and their relation with existing bounds is discussed. 
    more » « less
  4. null (Ed.)
    We consider the private information retrieval (PIR) problem from decentralized uncoded caching databases. There are two phases in our problem setting, a caching phase, and a retrieval phase. In the caching phase, a data center containing all the K files, where each file is of size L bits, and several databases with storage size constraint μ K L bits exist in the system. Each database independently chooses μ K L bits out of the total K L bits from the data center to cache through the same probability distribution in a decentralized manner. In the retrieval phase, a user (retriever) accesses N databases in addition to the data center, and wishes to retrieve a desired file privately. We characterize the optimal normalized download cost to be D * = ∑ n = 1 N + 1 N n - 1 μ n - 1 ( 1 - μ ) N + 1 - n 1 + 1 n + ⋯ + 1 n K - 1 . We show that uniform and random caching scheme which is originally proposed for decentralized coded caching by Maddah-Ali and Niesen, along with Sun and Jafar retrieval scheme which is originally proposed for PIR from replicated databases surprisingly results in the lowest normalized download cost. This is the decentralized counterpart of the recent result of Attia, Kumar, and Tandon for the centralized case. The converse proof contains several ingredients such as interference lower bound, induction lemma, replacing queries and answering string random variables with the content of distributed databases, the nature of decentralized uncoded caching databases, and bit marginalization of joint caching distributions. 
    more » « less
  5. A novel coding design is proposed to enhance information retrieval in a wireless network of users with partial access to the data, in the sense of observation, measurement, computation, or storage. Information exchange in the network is assisted by a multi-antenna base station (BS), with no direct access to the data. Accordingly, the missing parts of data are exchanged among users through an uplink (UL) step followed by a downlink (DL) step. In this paper, new coding strategies, inspired by coded caching (CC) techniques, are devised to enhance both UL and DL steps. In the UL step, users transmit encoded and properly combined parts of their accessible data to the BS. Then, during the DL step, the BS carries out the required processing on its received signals and forwards a proper combination of the resulting signal terms back to the users, enabling each user to retrieve the desired information. Using the devised coded data retrieval strategy, the data exchange in both UL and DL steps requires the same communication delay, measured by normalized delivery time (NDT). Furthermore, the NDT of the UL/DL step is shown to coincide with the optimal NDT of the original DL multi-input single-output CC scheme, in which the BS is connected to a centralized data library. 
    more » « less