Abstract Heterotrimeric G-proteins modulate multiple signaling pathways in many eukaryotes. In plants, G-proteins have been characterized primarily from a few model angiosperms and a moss. Even within this small group, they seem to affect plant phenotypes differently: G-proteins are essential for survival in monocots, needed for adaptation but are nonessential in eudicots, and are required for life cycle completion and transition from the gametophytic to sporophytic phase in the moss Physcomitrium (Physcomitrella) patens. The classic G-protein heterotrimer consists of three subunits: one Gα, one Gβ and one Gγ. The Gα protein is a catalytically active GTPase and, in its active conformation, interacts with downstream effectors to transduce signals. Gα proteins across the plant evolutionary lineage show a high degree of sequence conservation. To explore the extent to which this sequence conservation translates to their function, we complemented the well-characterized Arabidopsis Gα protein mutant, gpa1, with Gα proteins from different plant lineages and with the yeast Gpa1 and evaluated the transgenic plants for different phenotypes controlled by AtGPA1. Our results show that the Gα protein from a eudicot or a monocot, represented by Arabidopsis and Brachypodium, respectively, can fully complement all gpa1 phenotypes. However, the basal plant Gα failed to complement the developmental phenotypes exhibited by gpa1 mutants, although the phenotypes that are exhibited in response to various exogenous signals were partially or fully complemented by all Gα proteins. Our results offer a unique perspective on the evolutionarily conserved functions of G-proteins in plants.
more »
« less
Cantil: a previously unreported organ in wild-type Arabidopsis regulated by FT, ERECTA and heterotrimeric G proteins
ABSTRACT We describe a previously unreported macroscopic Arabidopsis organ, the cantil, named for its ‘cantilever’ function of holding the pedicel at a distance from the stem. Cantil development is strongest at the first nodes after the vegetative to reproductive inflorescence transition; cantil magnitude and frequency decrease acropetally. Cantils develop in wild-type Arabidopsis accessions (e.g. Col-0, Ws and Di-G) as a consequence of delayed flowering in short days; cantil formation is observed in long days when flowering is delayed by null mutation of the floral regulator FLOWERING LOCUS T. The receptor-like kinase ERECTA is a global positive regulator of cantil formation; therefore, cantils never form in the Arabidopsis strain Ler. ERECTA functions genetically upstream of heterotrimeric G proteins. Cantil expressivity is repressed by the specific heterotrimeric complex subunits GPA1, AGB1 and AGG3, which also play independent roles: GPA1 suppresses distal spurs at cantil termini, while AGB1 and AGG3 suppress ectopic epidermal rippling. These G protein mutant traits are recapitulated in long-day flowering gpa1-3 ft-10 plants, demonstrating that cantils, spurs and ectopic rippling occur as a function of delayed phase transition, rather than as a function of photoperiod per se.
more »
« less
- Award ID(s):
- 1715826
- PAR ID:
- 10273281
- Date Published:
- Journal Name:
- Development
- Volume:
- 148
- Issue:
- 11
- ISSN:
- 0950-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.more » « less
-
Abstract Background The 29-member Arabidopsis AHL gene family is classified into three main classes based on nucleotide and protein sequence evolutionary differences. These differences include the presence or absence of introns, type and/or number of conserved AT-hook and PPC domains. AHL gene family members are divided into two phylogenetic clades, Clade-A and Clade-B. A majority of the 29 members remain functionally uncharacterized. Furthermore, the biological significance of the DNA and peptide sequence diversity, observed in the conserved motifs and domains found in the different AHL types, is a subject area that remains largely unexplored. Results Transgenic plants overexpressing AtAHL20 flowered later than the wild type under both short and long days. Transcript accumulation analyses showed that 35S:AtAHL20 plants contained reduced FT, TSF, AGL8 and SPL3 mRNA levels. Similarly, overexpression of AtAHL20’s orthologue in Camelina sativa, Arabidopsis’ closely related Brassicaceae family member species, conferred a late-flowering phenotype via suppression of CsFT expression. However, overexpression of an aberrant AtAHL20 gene harboring a missense mutation in the AT-hook domain’s highly conserved R-G-R core motif abolished the late-flowering phenotype. Data from targeted yeast-two-hybrid assays showed that AtAHL20 interacted with itself and several other Clade-A Type-I AHLs which have been previously implicated in flowering-time regulation: AtAHL19, AtAHL22 and AtAHL29. Conclusion We showed via gain-of-function analysis that AtAHL20 is a negative regulator of FT expression, as well as other downstream flowering time regulating genes. A similar outcome in Camelina sativa transgenic plants overexpressing CsAHL20 suggest that this is a conserved function. Our results demonstrate that AtAHL20 acts as a photoperiod-independent negative regulator of transition to flowering.more » « less
-
Beckles, Diane (Ed.)Abstract Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, are involved in the regulation of multiple signaling pathways in plants. OsDEP1 (a Gγ subunit) of rice and TaNBP1 (a Gβ subunit) of wheat are homologs of Arabidopsis AGG3 and AGB1, respectively, which are regulators of grain size and also involved in nitrogen responses. However, the function of Arabidopsis G-proteins in nitrogen utilization under different nitrogen conditions has not been fully investigated. In this study, to evaluate the role of Arabidopsis G-proteins in yield and nitrogen use efficiency (NUE), overexpression transgenic lines AtGPA1, AtAGB1 together with AtAGG1 (AGB1-AGG1), AtAGB1 together with AtAGG2 (AGB1-AGG2), and AtAGB1 together with AtAGG3 (AGB1-AGG3) were created in Brassica napus ‘K407’. Analysis of multiple transgenic B. napus lines showed that overexpression of GPA1, AGB1-AGG1, AGB1-AGG2, or AGB1-AGG3 led to increased biomass of seedling plants, including a well-developed root system, and increased nitrogen uptake under low and high nitrogen conditions. The activity of glutamine synthetase, a key nitrogen assimilating enzyme, and the expression levels of genes that are involved in nitrogen uptake and assimilation were significantly increased in overexpression plants under the low nitrogen condition. These properties enabled overexpression plants to increase the number of seeds per silique by 12–27% only under the low nitrogen condition, effectively improving yield per plant by 9–69% and NUE by 7–49%. These results reveal roles of G-proteins in regulating seed traits and NUE, and provide a strategy that can substantially improve crop yield and NUE.more » « less
-
Molecular interspecies dialogue between leguminous plants and nitrogen-fixing rhizobia results in the development of symbiotic root nodules. This is initiated by several nodulation-related receptors present on the surface of root hair epidermal cells. We have shown previously that specific subunits of heterotrimeric G-proteins and their associated regulator of G-protein signaling (RGS) proteins act as molecular links between the receptors and downstream components during nodule formation in soybeans. Nod factor receptor 1 (NFR1) interacts with and phosphorylates RGS proteins to regulate the G-protein cycle. Symbiosis receptor-like kinases (SymRK) phosphorylate Gα to make it inactive and unavailable for Gβγ. We now show that like NFR1, SymRK also interacts with the RGS proteins to phosphorylate them. Phosphorylated RGS has higher activity for accelerating guanosine triphosphate (GTP) hydrolysis by Gα, which favors conversion of active Gα to its inactive form. Phosphorylation of RGS proteins is physiologically relevant, as overexpression of a phospho-mimic version of the RGS protein enhances nodule formation in soybean. These results reveal an intricate fine-tuning of the G-protein signaling during nodulation, where a negative regulator (Gα) is effectively deactivated by RGS due to the concerted efforts of several receptor proteins to ensure adequate nodulation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
An official website of the United States government

