Evaluation of Headset-based Viewing and Desktop-based Viewing of Remote Lectures in a Social VR Platform
- Award ID(s):
- 1815976
- PAR ID:
- 10273309
- Date Published:
- Journal Name:
- VRST '20: 26th ACM Symposium on Virtual Reality Software and Technology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Plants are a vital component of human life on Earth; they provide us with food and essential nutrients as well as the oxygen we breathe. However, the science education community struggles to find ways to make plant processes less abstract and more understandable for learners. In this article we demonstrate how we make plant processes more understandable for learners by observing the behaviors of a specific plant structure, a stoma, which is a microscopic opening that plays a role in the movement of matter into and out of a plant. Recent research across plant-related science fields centers on plant stomata because they protect plants from various environmental strains, including attacks from pathogens. Translating this research into science classroom instruction has not occurred extensively. A key impediment is that few common methods to make stomata visible or demonstrate their dynamic nature to learners are available. The activities we share here make stomata visible utilizing a specific plant, Tradescantia zebrina, and common laboratory equipment. In the first activity, we share how to demonstrate stomata closing and opening by manipulating a combination of these environmental factors. In the second activity, we describe how to create a visual simulation of stomata response to attacks from microorganisms.more » « less
-
null (Ed.)Abstract Background Mass spectrometry (MS) uses mass-to-charge ratios of measured particles to decode the identities and quantities of molecules in a sample. Interpretation of raw MS depends upon data processing algorithms that render it human-interpretable. Quantitative MS workflows are complex experimental chains and it is crucial to know the performance and bias of each data processing method as they impact accuracy, coverage, and statistical significance of the result. Creation of the ground truth necessary for quantitatively evaluating MS1-aware algorithms is difficult and tedious task, and better software for creating such datasets would facilitate more extensive evaluation and improvement of MS data processing algorithms. Results We present JS-MS 2.0, a software suite that provides a dependency-free, browser-based, one click, cross-platform solution for creating MS1 ground truth. The software retains the first version’s capacity for loading, viewing, and navigating MS1 data in 2- and 3-D, and adds tools for capturing, editing, saving, and viewing isotopic envelope and extracted isotopic chromatogram features. The software can also be used to view and explore the results of feature finding algorithms. Conclusions JS-MS 2.0 enables faster creation and inspection of MS1 ground truth data. It is publicly available with an MIT license at github.com/optimusmoose/jsms.more » « less
An official website of the United States government

