skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methods for Viewing Plant Stomata Responses
Plants are a vital component of human life on Earth; they provide us with food and essential nutrients as well as the oxygen we breathe. However, the science education community struggles to find ways to make plant processes less abstract and more understandable for learners. In this article we demonstrate how we make plant processes more understandable for learners by observing the behaviors of a specific plant structure, a stoma, which is a microscopic opening that plays a role in the movement of matter into and out of a plant. Recent research across plant-related science fields centers on plant stomata because they protect plants from various environmental strains, including attacks from pathogens. Translating this research into science classroom instruction has not occurred extensively. A key impediment is that few common methods to make stomata visible or demonstrate their dynamic nature to learners are available. The activities we share here make stomata visible utilizing a specific plant, Tradescantia zebrina, and common laboratory equipment. In the first activity, we share how to demonstrate stomata closing and opening by manipulating a combination of these environmental factors. In the second activity, we describe how to create a visual simulation of stomata response to attacks from microorganisms.  more » « less
Award ID(s):
2207677
PAR ID:
10410587
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The American Biology Teacher
Volume:
85
Issue:
1
ISSN:
0002-7685
Page Range / eLocation ID:
33 to 37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Understanding how plants regulate water loss is important for improving crop productivity. Tight control of stomatal opening and closing is essential for the uptake of CO2while mitigating water vapor loss. The opening of stomata is regulated in part by homotypic vacuole fusion, which is mediated by conservedhomotypic vacuoleproteinsorting (HOPS) and vacuolar SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) complexes. HOPS tethers apposing vacuole membranes and promotes the formation oftrans-SNARE complexes to mediate fusion. In yeast, HOPS dissociates from the assembled SNARE complex to complete vacuole fusion, but little is known about this process in plants. HOPS-specific subunits VACUOLE PROTEIN SORTING39 (VPS39) and VPS41 are required for homotypic plant vacuole fusion, and a computational model predicted that post-translational modifications of HOPS may be needed for plant stomatal vacuole fusion. Here, we characterized a viable T-DNA insertion allele ofVPS39which demonstrated a critical role of VPS39 in stomatal vacuole fusion. We found that VPS39 has increased levels of phosphorylation when stomata are closed versus open, and that VPS39 function in stomata and embryonic development requires dynamic changes in phosphorylation. Our data are consistent with VPS39 phosphorylation altering vacuole dynamics in response to environmental cues, similar to well-established phosphorylation cascades that regulate ion transport during stomatal opening. SIGNIFICANCE STATEMENTVacuole fusion is important for stomata opening but how it is regulated in response of stomata opening signals is not characterized. This research demonstrated the role of the HOPS complex in vacuole fusion in stomata, and it identified phosphorylation sites in the HOPS subunit VPS39 that are critical for vacuole fusion. One Ser residue was enriched in closed stomata and represents a putative site for control of vacuole fusion downstream of stomata opening signals. 
    more » « less
  2. Abstract Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants’ lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective ‘fitness factors’ or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical ‘memory’ of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves. 
    more » « less
  3. Summary Heat waves occurring during droughts can have a devastating impact on yield, especially if they happen during the flowering and seed set stages of the crop cycle. Global warming and climate change are driving an alarming increase in the frequency and intensity of combined drought and heat stress episodes, critically threatening global food security.Because high temperature is detrimental to reproductive processes, essential for plant yield, we measured the inner temperature, transpiration, sepal stomatal aperture, hormone concentrations and transcriptomic response of closed soybean flowers developing on plants subjected to a combination of drought and heat stress.Here, we report that, during a combination of drought and heat stress, soybean plants prioritize transpiration through flowers over transpiration through leaves by opening their flower stomata, while keeping their leaf stomata closed. This acclimation strategy, termed ‘differential transpiration’, lowers flower inner temperature by about 2–3°C, protecting reproductive processes at the expense of vegetative tissues.Manipulating stomatal regulation, stomatal size and/or stomatal density of flowers could serve as a viable strategy to enhance the yield of different crops and mitigate some of the current and future impacts of global warming and climate change on agriculture. 
    more » « less
  4. Zhu, Xin-Guang (Ed.)
    Abstract Guard cell movements depend, in part, on the remodelling of vacuoles from a highly fragmented state to a fused morphology during stomata opening. Indeed, full opening of plant stomata requires vacuole fusion to occur. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. In plants, recruitment of HOPS subunits to the tonoplast has been shown to require the presence of the phosphoinositide phosphatidylinositol 3-phosphate. However, chemically depleting this lipid induces vacuole fusion. To resolve this counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we defined a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by using simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening—as induced by two distinct chemical treatments—we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signalling pathway, promoting the formation of SNARE complexes, but limiting their activity. 
    more » « less
  5. While plants provide some of the most interesting cases for individuality-related problems in philosophy of biology (e.g., Clarke 2012; Gerber 2018), no work has examined plant individuality through specifically focusing on physiological processes, a lacuna this paper aims to fill. We think that different domains of biology suggest different approaches, and our specific focus on physiological processes, such as plant hormone systems and source-sink balance regulations, will help to identify coordinated systems at different scales. Identifying physiological individuals is crucial for a wide range of research in plant biology, including research on plant nutrition, transport and accumulation of nutrients in edible parts, and plant responses to various stress conditions such as plant diseases and changing abiotic conditions. Although plants do produce systemic responses to local stimuli (e.g., a sudden wound on one leaf can result in a whole-plant response), considering them as individuals is (often) problematic. They are highly modular organisms, and they can grow vegetatively, constituting clones of what seem, superficially, to be individual organisms. Moreover, as with animals, there are problems raised by their symbiotic relations to micro-organisms, most notably the mycorrhiza, through which they may be connected to other plants. We argue that coordinated plant systems can be distinguished at multiple scales from a physiological perspective. While none of these is a unit that must be necessarily called “the individual,” they offer integrated approaches for various research problems in plant science. 
    more » « less