An amplitude analysis of decays is performed using proton-proton collision data, corresponding to an integrated luminosity of , collected with the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV. A resonant structure of spin-parity is observed in the invariant-mass spectrum with a significance of . The mass and width of the state, modeled with a Breit-Wigner line shape, are determined to be and , respectively, where the first uncertainties are statistical and the second systematic. These properties and the quark content are consistent with those of the open-charm tetraquark candidate observed previously in the final state of the decay. This result confirms the existence of the state in a new decay mode. The state, reported in the decay, is also searched for in the invariant-mass spectrum of the decay, without finding evidence for it. © 2025 CERN, for the LHCb Collaboration2025CERN
more »
« less
Measurement of the charm-mixing parameter yCP in D0→KS0ω decays at Belle
More Like this
-
-
A study of and decays to ( ) is performed using collision data collected by the LHCb experiment during LHC Runs 1–2, corresponding to an integrated luminosity of . The branching fractions for these decays are measured using the decay as a control channel. The decays and are observed for the first time. For decay modes with sufficient signal yields, asymmetries are measured in the full and localized regions of the final-state phase space. Evidence is found for violation in the decay, interpreted as originating primarily from an asymmetric decay amplitude. The measured asymmetries for other decays are compatible with zero. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
We report the results of the first search for Standard Model and baryon-number-violating two-body decays of the neutral mesons to and using of data collected at the resonance with the Belle detector at the KEKB asymmetric-energy collider. We observe no evidence of signal from any such decays and set 95% confidence-level upper limits on the products of and branching fractions for these two-body decays with in the range between and . Published by the American Physical Society2024more » « less
An official website of the United States government

