skip to main content


Title: Unusual Quasi 10‐Day Planetary Wave Activity and the Ionospheric Response During the 2019 Southern Hemisphere Sudden Stratospheric Warming
Abstract

An unusual sudden stratospheric warming (SSW) event occurred in the Southern Hemisphere in September 2019. Ground‐based and satellite observations show the presence of transient eastward‐ and westward‐propagating quasi‐10 day planetary waves (Q10DWs) during the SSW. The planetary wave activity maximizes in the mesosphere and lower thermosphere region approximately 10 days after the SSW onset. Analysis indicates that the westward‐propagating Q10DW with zonal wave numbers = 1 is mainly symmetric about the equator, which is contrary to theory which predicts the presence of an antisymmetric normal mode for such planetary wave. Observations from microwave limb sounder and sounding of the atmosphere using broadband emission radiometry are combined with meteor radar wind measurements from Antarctica, providing a comprehensive view of Q10DW wave activity in the Southern Hemisphere during this SSW. Analysis suggests that the Q10DWs of various wavenumbers are potentially excited from nonlinear wave‐wave interactions that also involve stationary planetary waves withs = 1 ands = 2. The Q10DWs are also found to couple the ionosphere with the neutral atmosphere. The timing of the quasi‐10‐day oscillations (Q10DOs) in the ionosphere are contemporaneous with the Q10DWs in the neutral atmosphere during a period of relatively low solar and geomagnetic activity, suggesting that the Q10DWs play a key role in driving the ionospheric Q10DOs during the Southern SSW event. This study provides observational evidence for coupling between the neutral atmosphere and ionosphere through the upward propagation of global scale planetary waves.

 
more » « less
Award ID(s):
1543446
NSF-PAR ID:
10366804
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
6
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The influence of atmospheric planetary waves on the occurrence of irregularities in the low latitude ionosphere is investigated using Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) simulations and Global Observations of the Limb and Disk (GOLD) observations. GOLD observations of equatorial plasma bubbles (EPBs) exhibit a ∼6–8 day periodicity during January–February 2021. Analysis of WACCM‐X simulations, which are constrained to reproduce realistic weather variability in the lower atmosphere, reveals that this coincides with an amplification of the westward propagating wavenumber‐1 quasi‐six day wave (Q6DW) in the mesosphere and lower thermosphere (MLT). The WACCM‐X simulated Rayleigh‐Taylor (R‐T) instability growth rate, considered as a proxy of EPB occurrence, is found to exhibit a ∼6‐day periodicity that is coincident with the enhanced Q6DW in the MLT. Additional WACCM‐X simulations performed with fixed solar and geomagnetic activity demonstrate that the ∼6‐day periodicity in the R‐T instability growth rate is related to the forcing from the lower atmosphere. The simulations suggest that the Q6DW influences the day‐to‐day formation of EPBs through interaction with the migrating semidiurnal tide. This leads to periodic oscillations in the zonal winds, resulting in periodic variability in the strength of the prereversal enhancement, which influences the R‐T instability growth rate and EPBs. The results demonstrate that atmospheric planetary waves, and their interaction with atmospheric tides, can have a significant impact on the day‐to‐day variability of EPBs.

     
    more » « less
  2. Abstract

    Using the Super Dual Auroral Radar Network observations (clustered around 60°N) and NCAR CESM2.0 extended Whole Atmosphere Community Climate Model nudged with reanalyzes, we examine the climatology of semidiurnal tides in meridional wind associated with the migrating component (SW2) and non‐migrating components of wavenumbers 1 (SW1) and 3 (SW3). We then illustrate their composite response to major sudden stratospheric warmings (SSWs). Peaking in late summer and winter, the climatological SW2 amplitude exceeds SW1 and SW3 except around late Fall and Spring. The winter climatological peak is absent in the model perhaps due to the zonal wind bias at the observed altitudes. The observed SW2 amplitude declines after SSW onset before enhancing ∼10 days later, along with SW1 and SW3. Within the observed region, the simulated SW2 only amplifies after SSW onset, with minimal SW1 and SW3 responses. The model reveals a stronger SW2 response above the observed location, with diminished amplitude before and enhancement after SSW globally. This enhancement appears related to increased equatorial ozone heating and background wind symmetry. The strongest SW1 and SW3 growth occurs in the Southern Hemisphere before SSW. SW2 and quasi‐stationary planetary wave activities are temporally collocated during SSW suggesting that their interactions excite SW1 and SW3. After SSW, the model also reveals (1) semidiurnal‐tide‐like perturbations generated possibly by the interactions between SW2 and westward‐traveling disturbances and (2) the enhancement of migrating semidiurnal lunar tide in the Northern Hemisphere that exceeds non‐migrating tidal and semidiurnal‐tide‐like responses. The simulated eastward‐propagating semidiurnal tides are briefly examined.

     
    more » « less
  3. Abstract

    We present an analysis of planetary‐scale oscillations during sudden stratospheric warming (SSW) events based on data obtained from a meteor radar located at Mohe (MH, 53.5°N, 122.3°E), the Aura satellite and Modern‐Era Retrospective analysis for Research and Applications, Version 2 data (MERRA2). The planetary‐scale oscillations in the mesosphere and lower thermosphere (MLT) region during eight SSW events from 2012 to 2019 have been statistically investigated. Our analysis reveals that the enhancement or the generation of westward propagating quasi 16‐day oscillation with wavenumber 1 (W1) is a common feature during SSWs over MH. A strong enhancement of the quasi 4‐day oscillation during the 2018/2019 SSW is captured by both radar and satellite observations. The amplified quasi 4‐day oscillation has a period of ~4.3 days in both meridional and zonal winds and with a wavenumber of W2 in the zonal component. Using the meteor radar and MERRA2 data, the vertical structure of the quasi 4‐day oscillation from the stratosphere to the lower thermosphere is derived. The upward propagating feature of the quasi 4‐day oscillation in the meridional component indicates that the oscillation is very likely generated in the lower mesosphere. The mesospheric zonal wind reversal after an elevated stratopause event is observed during the SSW, which results in a negative meridional gradient of the quasi‐geostrophic potential vorticity. Our results not only reveal that the amplified quasi 4‐day oscillation in the MLT region is associated with the 2018/2019 SSW but also suggest that the amplification is originally generated around 60 km due to barotropic/baroclinic instability and propagates upward to MLT region.

     
    more » « less
  4. Abstract

    This paper investigates the lower‐to‐upper atmosphere coupling at high latitudes (>60°N) during the northern winter months of 2012–2013 years, which includes a period of major Sudden “Stratospheric” Warming (SSW). We perform statistical analysis of thermosphere wind disturbances with periods of 30–70 min, known as the medium scale traveling atmospheric disturbances (MSTADs) in atomic oxygen green line (557.7 nm) near ∼120 km and red line (630.0 nm) emissions near ∼250 km observed from Scanning Doppler Imagers (SDIs) over Alaska. The SDI MSTADs observations (60°–75°N) are interpreted in conjunction with the previous daytime medium‐scale traveling ionospheric disturbance (MSTID) observations by SuperDARN midlatitudes (35°–65°N) radars in theF‐region ionosphere and western hemisphere, which confirm findings from the SDI instruments. Increases in MSTAD activity from SDIs show correlations with the increasing meridional planetary wave (PW) amplitudes in the stratosphere derived from MERRA2 winds. Furthermore, a detailed study of the lower atmospheric conditions from MERRA2 winds indicates that the lower atmospheric sources of MSTADs are likely due to the stratospheric generated Gravity Waves (GWs) and not orographic GWs. Favorable stratospheric propagation conditions and polar vortex disturbances resulting from the increased PW activity in the stratospheric region both appear to contribute to increased MSTAD activity in the thermosphere. Additionally, the results show that the MSTID activity from SuperDARN HF radars at mid latitudes during the January 2013 SSW is lower than the MSTAD activity in SDI winds at high latitudes.

     
    more » « less
  5. Abstract

    Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi‐10‐ and 6‐day planetary waves (Q10DW and Q6DW,m = 1), solar semidiurnal tides withm = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB,m = 1 and 3) of Q10DW‐SW2 nonlinear interactions. We further present 7‐year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley‐Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW.

     
    more » « less