skip to main content


Title: Cast iron drinking water pipe biofilms support diverse microbial communities containing antibiotic resistance genes, metal resistance genes, and class 1 integrons
Antimicrobial resistance is a well-documented public health concern. The role that drinking water distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs), and intI 1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular microbial taxa. Eight sample types in triplicate ( n = 24) were taken from inside a >100 year-old, six ft. section of a full-scale chloraminated cast iron drinking water main. Droplet digital PCR (ddPCR) was employed as a novel approach to quantify ARGs in pipes from full-scale drinking water distribution systems (DWDS) because it yielded higher detection frequencies than quantitative PCR (qPCR). Illumina sequencing was employed to characterize the microbial community based on 16S rRNA genes. ARGs and MRGs were detected in all 24 pipe samples. Every sample contained targeted genes. Interestingly, the mean absolute abundances of ARGs and MRGs only varied by approximately one log value across sample types, but the mean relative abundances (copy numbers normalized to 16S rRNA genes) varied by over two log values. The ARG and MRGs concentrations were not significantly different between sample types, despite significant changes in dominant microbial taxa. The most abundant genera observed in the biofilm communities were Mycobacterium (0.2–70%), and β-lactam resistance genes bla TEM , bla SHV , and the integrase gene of class 1 integrons ( intI 1) were positively correlated with Mycobacterium . The detection of ARGs, MRGs, and class 1 integrons across all sample types within the pipe indicates that pipes themselves can serve as sources for ARGs in DWDS. Consequently, future work should investigate the role of pipe materials as well as corrosion inhibitors to determine how engineering decisions can mitigate ARGs in drinking water that stem from pipe materials.  more » « less
Award ID(s):
2027288 2027233
NSF-PAR ID:
10273421
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
7
Issue:
3
ISSN:
2053-1400
Page Range / eLocation ID:
584 to 598
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kumar, Bimlesh (Ed.)

    Various spatiotemporal, hydraulic, and water quality parameters can affect the microbial community composition of water within drinking water distribution systems (DWDSs). Although some relationships between various paravmeters and microbial growth are known, the effects of spatial and temporal trends on particle-associated microbial communities in chlorinated DWDSs remain poorly understood. The objectives of this study were to characterize the microbial community composition of both particle-associated bacteria (PAB) and total bacteria (TB) within a full-scale chlorinated DWDS, and assess relationships between microbiavvl community and various spatiotemporal, hydraulic, and water quality parameters. Bulk water samples were collected from the treatment plant, a storage tank, and 12 other sites in a rural chlorinated DWDS at varying distances from the treatment plant on four sampling dates spanning six months. Amplicon sequencing targeting the 16S rRNA gene was performed to characterize the microbial community. Gammaproteobacteria dominated the DWDS, and hydraulic parameters were well-correlated with differences in microbial communities between sites. Results indicate that hydraulic changes may have led to the detachment of biofilms and loose deposits, subsequently affecting the microbial community composition at each site. Spatial variations in microbial community were stronger than temporal variations, differing from similar studies and indicating that the highly varied hydraulic conditions within this system may intensify spatial variations. Genera containing pathogenic species were detected, withLegionellaandPseudomonasdetected at every site at least once andMycobacteriumdetected at most sites. However, only one sample had quantifiablePseudomonas aeruginosathrough quantitative polymerase chain reaction (qPCR), and no samples had quantifiableLegionella pneumophilaorMycobacterium avium, indicating a low human health risk. This study establishes spatial variations in PAB associated with varied hydraulic conditions as an important factor driving microbial community within a chlorinated DWDS.

     
    more » « less
  2. null (Ed.)
    Understanding the movement of antimicrobial resistance genes (ARGs) in the environment is critical to managing their spread. To assess potential ARG transport through the air via urban bioaerosols in cities with poor sanitation, we quantified ARGs and a mobile integron (MI) in ambient air over periods spanning rainy and dry seasons in Kanpur, India ( n = 53), where open wastewater canals (OCWs) are prevalent. Gene targets represented major antibiotic groups—tetracyclines ( tetA ), fluoroquinolines ( qnrB ), and beta-lactams ( bla TEM )—and a class 1 mobile integron ( intI1 ). Over half of air samples located near, and up to 1 km from OCWs with fecal contamination ( n = 45) in Kanpur had detectable targets above the experimentally determined limits of detection (LOD): most commonly intI1 and tetA (56% and 51% of samples, respectively), followed by bla TEM (8.9%) and qnrB (0%). ARG and MI densities in these positive air samples ranged from 6.9 × 10 1 to 5.2 × 10 3 gene copies/m 3 air. Most (7/8) control samples collected 1 km away from OCWs were negative for any targets. In comparing experimental samples with control samples, we found that intI1 and tetA densities in air are significantly higher ( P = 0.04 and P = 0.01, respectively, alpha = 0.05) near laboratory-confirmed fecal contaminated waters than at the control site. These data suggest increased densities of ARGs and MIs in bioaerosols in urban environments with inadequate sanitation. In such settings, aerosols may play a role in the spread of AR. 
    more » « less
  3. We conducted a critical review to establish what is known about the sources, characteristics, and dissemination of ARGs in the atmosphere. We identified 52 papers that reported direct measurements of bacterial ARGs in air samples and met other inclusion criteria. The settings of the studies fell into the following categories: urban, rural, hospital, industrial, wastewater treatment plants (WWTPs), composting and landfill sites, and indoor environments. Certain genes were commonly studied and generally abundant: sul1 , intI1 , β-lactam ARGs, and tetracycline ARGs. Abundances of total ARGs varied by season and setting, with air in urban areas having higher ARG abundance than rural areas during the summer and vice versa during the winter. There was greater consistency in the types and abundances of ARGs throughout the seasons in urban areas. Human activity within indoor environments was also linked to increased ARG content (abundance, diversity, and concentration) in the air. Several studies found that human exposure to ARGs through inhalation was comparable to exposure through drinking water or ingesting soil. Detection of ARGs in air is a developing field, and differences in sampling and analysis methods reflect the many possible approaches to studying ARGs in air and make direct comparisons between studies difficult. Methodologies need to be standardized to facilitate identification of the dominant ARGs in the air, determine their major sources, and quantify the role of atmospheric transport in dissemination of ARGs in the environment. With such knowledge we can develop better policies and guidelines to limit the spread of antimicrobial resistance. 
    more » « less
  4. null (Ed.)
    To better understand the elimination of transforming activity of antibiotic resistance genes (ARGs), this study investigated the deactivation of transforming activity of an ARG (in Escherichia coli as a host) and ARG degradation (according to quantitative PCR [qPCR] with different amplicon sizes) during UV (254 nm) and UV/H 2 O 2 treatments of plasmid pUC19 containing an ampicillin resistance gene ( amp R ). The required UV fluence for each log 10 reduction of the transforming activity during UV treatment was ∼37 mJ cm −2 for both extra- and intra-cellular pUC19 (the latter within E. coli ). The resulting fluence-based rate constant ( k ) of ∼6.2 × 10 −2 cm 2 mJ −1 was comparable to the k determined previously for transforming activity loss of plasmids using host cells capable of DNA repair, but much lower (∼10-fold) than that for DNA repair-deficient cells. The k value for pUC19 transforming activity loss was similarly much lower than the k calculated for cyclobutane-pyrimidine dimer (CPD) formation in the entire plasmid. These results indicate the significant role of CPD repair in the host cells. The degradation rate constants ( k ) of amp R measured by qPCR increased with increasing target amplicon size (192–851 bp) and were close to the k calculated for the CPD formation in the given amplicons. Further analysis of the degradation kinetics of plasmid-encoded genes from this study and from the literature revealed that qPCR detected most UV-induced DNA damage. In the extracellular plasmid, DNA damage mechanisms other than CPD formation ( e.g. , base oxidation) were detectable by qPCR and gel electrophoresis, especially during UV/H 2 O 2 treatment. Nevertheless, the enhanced DNA damage for the extracellular plasmids did not result in faster elimination of the transforming activity. Our results indicate that calculated CPD formation rates and qPCR analyses are useful for predicting and/or measuring the rate of DNA damage and predicting the efficiency of transforming activity elimination for plasmid-encoded ARGs during UV-based water disinfection and oxidation processes. 
    more » « less
  5. Abstract The perennial ice-covered lakes of the Antarctic McMurdo Dry Valleys harbour oligotrophic microbial communities that are separated geographically from other aquatic systems. Their microbiomes include planktonic microbes as well as lift-off mat communities that emerge from the ice. We used the ShortBRED protein family profiler to quantify the antibiotic resistance genes (ARGs) from metagenomes of lift-off mats emerging from ice and from filtered water samples of Lake Fryxell and Lake Bonney. The overall proportion of ARG hits was similar to that found in temperate-zone rural ponds with moderate human inputs. Specific ARGs showed distinct distributions for the two lakes and for mat vs planktonic sources. Metagenomic taxa distributions showed that mat phototrophs consisted mainly of cyanobacteria or Betaproteobacteria, whereas the water column phototrophs were mainly protists. An enrichment culture of the Betaproteobacterium Rhodoferax antarcticus from a Lake Fryxell mat sample showed an unusual mat-forming phenotype not previously reported for this species. Its genome showed no ARGs associated with Betaproteobacteria but had ARGs consistent with a minor Pseudomonas component. The Antarctic lake mats and water showed specific ARGs distinctive to the mat and water sources, but overall ARG levels were similar to those of temperate water bodies with moderate human inputs. 
    more » « less