skip to main content


Title: Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography
This review surveys advances in the fabrication of functional microdevices by multi-photon lithography (MPL) using the SU-8 material system. Microdevices created by MPL in SU-8 have been key to progress in the fields of micro-fluidics, micro-electromechanical systems (MEMS), micro-robotics, and photonics. The review discusses components, properties, and processing of SU-8 within the context of MPL. Emphasis is focused on advances within the last five years, but the discussion also includes relevant developments outside this period in MPL and the processing of SU-8. Novel methods for improving resolution of MPL using SU-8 and discussed, along with methods for functionalizing structures after fabrication.  more » « less
Award ID(s):
1711356
NSF-PAR ID:
10273450
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Micromachines
Volume:
12
Issue:
5
ISSN:
2072-666X
Page Range / eLocation ID:
472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acoustic patterning of micro-particles has many important biomedical applications. However, fabrication of such microdevices is costly and labor-intensive. Among conventional fabrication methods, photo-lithography provides high resolution but is expensive and time consuming, and not ideal for rapid prototyping and testing for academic applications. In this work, we demonstrate a highly efficient method for rapid prototyping of acoustic patterning devices using laser manufacturing. With this method we can fabricate a newly designed functional acoustic device in 4 hours. The acoustic devices fabricated using this method can achieve sub-wavelength, complex and non-periodic patterning of microparticles and biological objects with a spatial resolution of 60 μm across a large active manipulation area of 10 × 10 mm 2 . 
    more » « less
  2. Over the past several decades, urban planning has considered a variety of advanced analysis methods with greater and lesser degrees of adoption. Geographic Information Systems (GIS) is probably the most notable, with others such as database management systems (DBMS), decision support systems (DSS), planning support systems (PSS), and expert systems (ES), having mixed levels of recognition and acceptance (Kontokosta, C. E. (2021). Urban informatics in the science and practice of planning. Journal of Planning Education and Research, 41(4), 382–395. doi:10.1177/0739456X18793716; Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473). Advances in information technologies have moved very slowly in the field of urban planning, more recently concerning ‘smart city’ technologies while revolutionizing other domains, such as consumer goods and services. Baidu, Amazon, Netflix, Google, and many others are using these technologies to gain insights into consumer behaviour and characteristics and improve supply chains and logistics. This is an opportune time for urban planners to consider the application of AI-related techniques given vast increases in data availability, increased processing speeds, and increased popularity and development of planning related applications. Research on these topics by urban planning scholars has increased over the past few years, but there is little evidence to suggest that the results are making it into the hands of professional planners (Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B: Urban Analytics and City Science, 45(1), 3–6; Batty, M. (2021). Planning education in the digital age. Environment and Planning B: Urban Analytics and City Science, 48(2), 207–211). Others encourage planners to leverage the ubiquity of data and advances in computing to enhance redistributive justice in information resources and procedural justice in decision-making among marginalized communities (Boeing, G., Besbris, M., Schachter, A., & Kuk, J. (2020). Housing search in the Age of Big data: Smarter cities or the same Old blind spots? Housing Policy Debate, 31(1), 112–126; Goodspeed, R. (2015). Smart cities: Moving beyond urban cybernetics to tackle wicked problems. Cambridge journal of regions, Economy and Society, 8(1), 79–92). This article highlights findings from a recent literature review on AI in planning and discusses the results of a national survey of urban planners about their perspectives on AI adoption and concerns they have expressed about its broader use in the profession. Currently, the outlook is mixed, matching how urban planners initially viewed the early stages of computer adoption within the profession. And yet today, personal computers are essential to any job. 
    more » « less
  3. SU-8 is an epoxy-based, negative-tone photoresist that has been extensively utilized to fabricate myriads of devices including biomedical devices in the recent years. This paper first reviews the biocompatibility of SU-8 for in vitro and in vivo applications. Surface modification techniques as well as various biomedical applications based on SU-8 are also discussed. Although SU-8 might not be completely biocompatible, existing surface modification techniques, such as O2 plasma treatment or grafting of biocompatible polymers, might be sufficient to minimize biofouling caused by SU-8. As a result, a great deal of effort has been directed to the development of SU-8-based functional devices for biomedical applications. This review includes biomedical applications such as platforms for cell culture and cell encapsulation, immunosensing, neural probes, and implantable pressure sensors. Proper treatments of SU-8 and slight modification of surfaces have enabled the SU-8 as one of the unique choices of materials in the fabrication of biomedical devices. Due to the versatility of SU-8 and comparative advantages in terms of improved Young’s modulus and yield strength, we believe that SU-8-based biomedical devices would gain wider proliferation among the biomedical community in the future. 
    more » « less
  4. Unconventional shale or tight oil/gas reservoirs that have micro-/nano-sized dual-scale matrix pore throats with micro-fractures may result in different fluid flow mechanisms compared with conventional oil/gas reservoirs. Microfluidic models, as a potential powerful tool, have been used for decades for investigating fluid flow at the pore-scale in the energy field. However, almost all microfluidic models were fabricated by using etching methods and very few had dual-scale micro-/nanofluidic channels. Herein, we developed a lab-based, quick-processing and cost-effective fabrication method using a lift-off process combined with the anodic bonding method, which avoids the use of any etching methods. A dual-porosity matrix/micro-fracture pattern, which can mimic the topology of shale with random irregular grain shapes, was designed with the Voronoi algorithm. The pore channel width range is 3 μm to 10 μm for matrices and 100–200 μm for micro-fractures. Silicon is used as the material evaporated and deposited onto a glass wafer and then bonded with another glass wafer. The channel depth is the same (250 nm) as the deposited silicon thickness. By using an advanced confocal laser scanning microscopy (CLSM) system, we directly visualized the pore level flow within micro/nano dual-scale channels with fluorescent-dyed water and oil phases. We found a serious fingering phenomenon when water displaced oil in the conduits even if water has higher viscosity and the residual oil was distributed as different forms in the matrices, micro-fractures and conduits. We demonstrated that different matrix/micro-fracture/macro-fracture geometries would cause different flow patterns that affect the oil recovery consequently. Taking advantage of such a micro/nano dual-scale ‘shale-like’ microfluidic model fabricated by a much simpler and lower-cost method, studies on complex fluid flow behavior within shale or other tight heterogeneous porous media would be significantly beneficial. 
    more » « less
  5. null (Ed.)
    Abstract Ultrafast laser 3D lithography based on non-linear light–matter interactions, widely known as multi-photon lithography (MPL), offers unrivaled precision rapid prototyping and flexible additive manufacturing options. 3D printing equipment based on MPL is already commercially available, yet there is still no comprehensive understanding of factors determining spatial resolution, accuracy, fabrication throughput, repeatability, and standardized metrology methods for the accurate characterization of the produced 3D objects and their functionalities. The photoexcitation mechanisms, spatial-control or photo-modified volumes, and the variety of processable materials are topics actively investigated. The complexity of the research field is underlined by a limited understanding and fragmented knowledge of light-excitation and material response. Research to date has only provided case-specific findings on photoexcitation, chemical modification, and material characterization of the experimental data. In this review, we aim to provide a consistent and comprehensive summary of the existing literature on photopolymerization mechanisms under highly confined spatial and temporal conditions, where, besides the excitation and cross-linking, parameters such as diffusion, temperature accumulation, and the finite amount of monomer molecules start to become of critical importance. Key parameters such as photoexcitation, polymerization kinetics, and the properties of the additively manufactured materials at the nanoscale in 3D are examined, whereas, the perspectives for future research and as well as emerging applications are outlined. 
    more » « less