skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stark trade-offs and elegant solutions in arthropod visual systems
ABSTRACT Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.  more » « less
Award ID(s):
1856241
PAR ID:
10273523
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
224
Issue:
4
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The principal eyes of jumping spiders (Salticidae) integrate a dual-lens system, a tiered retinal matrix with multiple photoreceptor classes and muscular control of retinal movements to form high resolution images, extract color information, and dynamically evaluate visual scenes. While much work has been done to characterize these more complex principal anterior eyes, little work has investigated the three other pairs of simpler secondary eyes: the anterior lateral eye pair and two posterior (lateral and median) pairs of eyes. We investigated the opsin protein component of visual pigments in the eyes of three species of salticid using transcriptomics and immunohistochemistry. Based on characterization and localization of a set of three conserved opsins (Rh1 - green sensitive, Rh2 - blue sensitive, and Rh3 - ultraviolet sensitive) we have identified potential photoreceptors for blue light detection in the eyes of two out of three species: Menemerus bivittatus (Chrysillini) and Habrocestum africanum (Hasarinii). Additionally, the photoreceptor diversity of the secondary eyes exhibits more variation than previous estimates, particularly for the small, posterior median eyes previously considered vestigial in some species. In all three species investigated the lateral eyes were dominated by green-sensitive visual pigments (RH1 opsins), while the posterior median retinas were dominated by opsins forming short-wavelength sensitive visual pigments (e.g. RH2 and/or RH3/RH4). There was also variation among secondary eye types and among species in the distribution of opsins in retinal photoreceptors, particularly for the putatively blue-sensitive visual pigment formed from RH2. Our findings suggest secondary eyes have the potential for color vision, with observed differences between species likely associated with different ecologies and visual tasks. 
    more » « less
  2. Stomatopod crustaceans have among the most complex eyes in the animal kingdom, with up to twelve different color detection channels. The capabilities of these unique eyes include photoreception of ultraviolet (UV) wavelengths (<400 nm). UV vision has been well characterized in adult stomatopods but has not been previously demonstrated in the comparatively simpler larval eye. Larval stomatopod eyes are developmentally distinct from their adult counterpart and have been described as lacking the visual pigment diversity and morphological specializations found in adult eyes. However, recent studies have provided evidence that larval stomatopod eyes are more complex than previously thought and warrant closer investigation. Using electroretinogram recordings in live animals we found physiological evidence of blue and UV sensitive photoreceptors in larvae of the Caribbean stomatopod species Neogonodactylus oerstedii. Transcriptomes of individual larvae were used to identify the expression of three distinct UV opsins transcripts, which may indicate the presence of multiple UV spectral channels. This is the first paper to document UV vision in any larval stomatopod, expanding our understanding of the importance of UV sensitivity in plankton. Similar to adults, larval stomatopod eyes are more complex than expected and contain previously uncharacterized molecular diversity and physiological functions. 
    more » « less
  3. The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype–phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’. 
    more » « less
  4. Abstract Color vision is thought to play a key role in the evolution of animal coloration, while achromatic vision is rarely considered as a mechanism for species recognition. Here we test the hypothesis that brightness vision rather than color vision helpsAdelpha fessoniabutterflies identify potential mates while their co-mimetic wing coloration is indiscriminable to avian predators. We examine the trichromatic visual system ofA. fessoniaand characterize its photoreceptors using RNA-seq, eyeshine, epi-microspectrophotometry, and optophysiology. We model the discriminability of its wing color patches in relation to those of its co-mimic,A. basiloides, throughA. fessoniaand avian eyes. Visual modeling suggests that neitherA. fessonianor avian predators can readily distinguish the co-mimics’ coloration using chromatic or achromatic vision under natural conditions. These results suggest that mimetic colors are well-matched to visual systems to maintain mimicry, and that mate avoidance between these two look-alike species relies on other cues. 
    more » « less
  5. Bats are famous for using their hearing to explore their environments, yet fewer people are aware that these flying mammals have both good night and daylight vision. Some bats can even see in color thanks to two light-sensitive proteins at the back of their eyes: S-opsin which detects blue and ultraviolet light and L-opsin which detects green and red light. Many species of bat, however, are missing one of these proteins and cannot distinguish any colors; in other words, they are completely color-blind. Some bat species found in Central and South America have independently lost their ability to see blue-ultraviolet light and have thus also lost their color vision. These bats have diverse diets – ranging from insects to fruits and even blood – and being able to distinguish color may offer an advantage in many of their activities, including hunting or foraging. The vision genes in these bats, therefore, give scientists an opportunity to explore how a seemingly important trait can be lost at the molecular level. Sadier, Davies et al. now report that S-opsin has been lost more than a dozen times during the evolutionary history of these Central and South American bats. The analysis used samples from 55 species, including animals caught from the wild and specimens from museums. As with other proteins, the instructions encoded in the gene sequence for S opsin need to be copied into a molecule of RNA before they can be translated into protein. As expected, S-opsin was lost several times because of changes in the gene sequence that disrupted the formation of the protein. However, at several points in these bats’ evolutionary history, additional changes have taken place that affected the production of the RNA or the protein, without an obvious change to the gene itself. This finding suggests that other studies that rely purely on DNA to understand evolution may underestimate how often traits may be lost. By capturing ‘evolution in action’, these results also provide a more complete picture of the molecular targets of evolution in a diverse set of bats. 
    more » « less