skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symbolic determinant identity testing (SDIT) is not a null cone problem; and the symmetries of algebraic varieties
The object of study of this paper is the following multi-determinantal algebraic variety, SINGn, m, which captures the symbolic determinant identity testing (SDIT) problem (a canonical version of the polynomial identity testing (PIT) problem), and plays a central role in algebra, algebraic geometry and computational complexity theory. SINGn, m is the set of all m-tuples of n×n complex matrices which span only singular matrices. In other words, the determinant of any linear combination of the matrices in such a tuple vanishes. The algorithmic complexity of testing membership in SINGn, m is a central question in computational complexity. Having almost a trivial probabilistic algorithm, finding an efficient deterministic algorithm is a holy grail of derandomization, and to top it, will imply super-polynomial circuit lower bounds! A sequence of recent works suggests efficient deterministic “geodesic descent” algorithms for memberships in a general class of algebraic varieties, namely the null cones of (reductive) linear group actions. Can such algorithms be used for the problem above? Our main result is negative: SINGn, m is not the null cone of any such group action! This stands in stark contrast to a non-commutative analog of this variety (for which such algorithms work), and points to an inherent structural difficulty of SINGn, m. In other words, we provide a barrier for the attempts of derandomizing SDIT via these algorithms. To prove this result we identify precisely the group of symmetries of SINGn, m. We find this characterization, and the tools we introduce to prove it, of independent interest. Our characterization significantly generalizes a result of Frobenius for the special case m=1 (namely, computing the symmetries of the determinant). Our proof suggests a general method for determining the symmetries of general algebraic varieties, an algorithmic problem that was hardly studied and we believe is central to algebraic complexity.  more » « less
Award ID(s):
1900460
PAR ID:
10273524
Author(s) / Creator(s):
;
Date Published:
Journal Name:
FOCS 2020
Volume:
1
Page Range / eLocation ID:
881-888
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of computing succinct encodings of lists of generators for invariant rings for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for invariant rings of SLn(C)-representations. We provide simple examples that disprove this conjecture (under standard complexity assumptions). We develop a general framework, denoted algebraic circuit search problems, that captures many important problems in algebraic complexity and computational invariant theory. This framework encompasses various proof systems in proof complexity and some of the central problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the aforementioned problem of computing succinct encodings for generators for invariant rings. 
    more » « less
  2. We consider the problem of computing succinct encodings of lists of generators for invariant rings for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for invariant rings of SL_n(C)-representations. We provide simple examples that disprove this conjecture (under standard complexity assumptions). We develop a general framework, denoted algebraic circuit search problems, that captures many important problems in algebraic complexity and computational invariant theory. This framework encompasses various proof systems in proof complexity and some of the central problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the aforementioned problem of computing succinct encodings for generators for invariant rings. 
    more » « less
  3. We show that there is an equation of degree at most poly( n ) for the (Zariski closure of the) set of the non-rigid matrices: That is, we show that for every large enough field 𝔽, there is a non-zero n 2 -variate polynomial P ε 𝔽[ x 1, 1 , ..., x n, n ] of degree at most poly( n ) such that every matrix M that can be written as a sum of a matrix of rank at most n /100 and a matrix of sparsity at most n 2 /100 satisfies P(M) = 0. This confirms a conjecture of Gesmundo, Hauenstein, Ikenmeyer, and Landsberg [ 9 ] and improves the best upper bound known for this problem down from exp ( n 2 ) [ 9 , 12 ] to poly( n ). We also show a similar polynomial degree bound for the (Zariski closure of the) set of all matrices M such that the linear transformation represented by M can be computed by an algebraic circuit with at most n 2 /200 edges (without any restriction on the depth). As far as we are aware, no such bound was known prior to this work when the depth of the circuits is unbounded. Our methods are elementary and short and rely on a polynomial map of Shpilka and Volkovich [ 21 ] to construct low-degree “universal” maps for non-rigid matrices and small linear circuits. Combining this construction with a simple dimension counting argument to show that any such polynomial map has a low-degree annihilating polynomial completes the proof. As a corollary, we show that any derandomization of the polynomial identity testing problem will imply new circuit lower bounds. A similar (but incomparable) theorem was proved by Kabanets and Impagliazzo [ 11 ]. 
    more » « less
  4. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    Many iterative algorithms in computer science require repeated computation of some algebraic expression whose input varies slightly from one iteration to the next. Although efficient data structures have been proposed for maintaining the solution of such algebraic expressions under low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model and finite fields) which may not accurately reflect the more limited complexity guarantees of real computers. In this paper, we analyze the stability and bit complexity of such data structures for expressions that involve the inversion, multiplication, addition, and subtraction of matrices under the word-RAM model. We show that the bit complexity only increases linearly in the number of matrix operations in the expression. In addition, we consider the bit complexity of maintaining the determinant of a matrix expression. We show that the required bit complexity depends on the logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally, we discuss rank maintenance and its connections to determinant maintenance. Our results have wide applications ranging from computational geometry (e.g., computing the volume of a polytope) to optimization (e.g., solving linear programs using the simplex algorithm). 
    more » « less
  5. Ta-Shma, Amnon (Ed.)
    The Tensor Isomorphism problem (TI) has recently emerged as having connections to multiple areas of research within complexity and beyond, but the current best upper bound is essentially the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph Isomorphism, essentially optimal lower bounds are known for approaches based on PC and SoS (Berkholz & Grohe, SODA '17). Our main results are an Ω(n) lower bound on PC degree or SoS degree for Tensor Isomorphism, and a nontrivial upper bound for testing isomorphism of tensors of bounded rank. We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing the rank of two matrices (which is essentially the same as 2-TI), or deriving BA=I from AB=I. As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof system, PC-Inv, which allows as derivation rules all substitution instances of the implication AB=I → BA=I. We conjecture that even PC-Inv cannot solve TI in polynomial time either, but leave open getting lower bounds on PC-Inv for any system of equations, let alone those for TI. We also highlight many other open questions about proof complexity approaches to TI. 
    more » « less