Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2022
-
The tensor rank and border rank of the $3 \times 3$ determinant tensor are known to be $5$ if the characteristic is not two. In characteristic two, the existing proofs of both the upper and lower bounds fail. In this paper, we show that the tensor rank remains $5$ for fields of characteristic two as well.
-
We investigate the approximability of the following optimization problem. The input is an n× n matrix A=(Aij) with real entries and an origin-symmetric convex body K⊂ ℝn that is given by a membership oracle. The task is to compute (or approximate) the maximum of the quadratic form ∑i=1n∑j=1n Aij xixj=⟨ x,Ax⟩ as x ranges over K. This is a rich and expressive family of optimization problems; for different choices of matrices A and convex bodies K it includes a diverse range of optimization problems like max-cut, Grothendieck/non-commutative Grothendieck inequalities, small set expansion and more. While the literature studied these specialmore »
-
Given a mixture between two populations of coins, “positive” coins that each have unknown and potentially different—bias ≥ 1 + ∆ and “negative” coins with bias ≤ 2 − ∆, we consider the task of estimating the fraction ρ of positive coins to within additive error E. We achieve an upper and lower bound of Θ( ρ log 1 ) samples for a 1 −δ probability of success, where crucially, our lower bound applies to all fully-adaptive algorithms. Thus, our sample complexity bounds have tight dependence for every relevant problem parameter. A crucial component of our lower bound proof ismore »
-
A graph G is called {\em self-ordered} (a.k.a asymmetric) if the identity permutation is its only automorphism. Equivalently, there is a unique isomorphism from G to any graph that is isomorphic to G. We say that G=(VE) is {\em robustly self-ordered}if the size of the symmetric difference between E and the edge-set of the graph obtained by permuting V using any permutation :VV is proportional to the number of non-fixed-points of . In this work, we initiate the study of the structure, construction and utility of robustly self-ordered graphs. We show that robustly self-ordered bounded-degree graphs exist (in abundance), andmore »
-
One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., P 6⊆ NC1). Karchmer, Raz, and Wigderson [KRW95] suggested to approach this problem by proving that depth complexity behaves “as expected” with respect to the composition of functions f ⋄ g. They showed that the validity of this conjecture would imply that P 6⊆ NC^1 . Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function f, but only for few inner functions g. Thus,more »
-
We consider the problem of computing succinct encodings of lists of generators for invariant rings for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for invariant rings of SL_n(C)-representations. We provide simple examples that disprove this conjecture (under standard complexity assumptions). We develop a general framework, denoted algebraic circuit search problems, that captures many important problems in algebraic complexity and computational invariant theory. This framework encompasses various proof systems in proof complexity and some of the central problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the aforementioned problem of computingmore »
-
Restarts are a widely-used class of techniques integral to the efficiency of Conflict-Driven Clause Learning (CDCL) Boolean SAT solvers. While the utility of such policies has been well-established empirically, a theoretical understanding of whether restarts are indeed crucial to the power of CDCL solvers is missing. In this paper, we prove a series of theoretical results that characterize the power of restarts for various models of SAT solvers. More precisely, we make the following contributions. First, we prove an exponential separation between a drunk randomized CDCL solver model with restarts and the same model without restarts using a family ofmore »