skip to main content

Title: A Comparative Study of Pellet-Based Extrusion Deposition of Short, Long, and Continuous Carbon Fiber-Reinforced Polymer Composites for Large-Scale Additive Manufacturing
Abstract Pellet-based extrusion deposition of carbon fiber-reinforced composites at high material deposition rates has recently gained much attention due to its applications in large-scale additive manufacturing. The mechanical and physical properties of large-volume components largely depend on their reinforcing fiber length. However, very few studies have been done thus far to have a direct comparison of additively fabricated composites reinforced with different carbon fiber lengths. In this study, a new additive manufacturing (AM) approach to fabricate long fiber-reinforced polymer (LFRP) was first proposed. A pellet-based extrusion deposition method was implemented, which directly used thermoplastic pellets and continuous fiber tows as feedstock materials. Discontinuous long carbon fibers, with an average fiber length of 20.1 mm, were successfully incorporated into printed LFRP samples. The printed LFRP samples were compared with short fiber-reinforced polymer (SFRP) and continuous fiber-reinforced polymer (CFRP) counterparts through mechanical tests and microstructural analyses. The carbon fiber dispersion, distribution of carbon fiber length and orientation, and fiber wetting were studied. As expected, a steady increase in flexural strength was observed with increasing fiber length. The carbon fibers were highly oriented along the printing direction. A more uniformly distributed discontinuous fiber reinforcement was found within printed SFRP and LFRP samples. Due more » to decreased fiber impregnation time and lowered impregnation rate, the printed CFRP samples showed a lower degree of impregnation and worse fiber wetting conditions. The feasibility of the proposed AM methods was further demonstrated by fabricating large-volume components with complex geometries. « less
Authors:
; ; ;
Award ID(s):
1930881
Publication Date:
NSF-PAR ID:
10273560
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
143
Issue:
7
ISSN:
1087-1357
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon fiber (CF)-reinforced thermoplastic composites have been widely used in different structural applications due to their superior thermal and mechanical properties. The big area additive manufacturing (BAAM) system, developed at Oak Ridge National Laboratory’s Manufacturing Demonstration Facility, has been used to manufacture several composite components, demonstration vehicles, molds, and dies. These components have been designed and fabricated using various CF-reinforced thermoplastics. In this study, the dynamic rheological and mechanical properties of a material commonly used in additive manufacturing, 20 wt% CF-acrylonitrile butadiene styrene (ABS), as well as three CF-reinforced high-temperature polymers, 25 wt% CF-polyphenylsulfone (PPSU), 35 wt% CF-polyethersulfone (PES), and 40 wt% CF-polyphenylene sulfide (PPS), used to print molds were investigated. The viscoelastic properties, namely storage modulus, loss modulus, tan delta, and complex viscosity, of these composites were studied, and the rheological behavior was related to the BAAM extrusion and bead formation process. The results showed 20 wt% CF-ABS and 40 wt% CF-PPS to display a more dominant elastic component at all frequencies tested while 25 wt% CF-PPSU and 35 wt% CF-PES have a more dominant viscous component. This viscoelastic behavior is then used to inform the deposition and bead formation process during extrusion on the BAAM system.
  2. Carbon fiber reinforced polymer (CFRP) composites have been increasingly used to replace metal parts in many industries such as aerospace, marine, automotive, and sporting goods. The CFRP parts compared with their metallic counter parts have the advantages of lightweight, significantly higher tensile strength, stiffer, and corrosion resistant. On the other hand, compared with many metal parts, the CFRP parts have many well-known disadvantages including the lower toughness, lower through-thickness tensile and shear strengths, lower thermal conductivity, lower electrical conductivity, and lower operating temperature. These disadvantages have made the conversion from metal parts into CFRP parts challenging and costly to design, manufacture, and maintain. The use of nanoparticles in polymer has been studied in the recent two decades. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been dispersed in various thermoset and thermoplastic polymers and improved the mechanical, electrical, and thermal properties; however, the properties were not comparable to CFRP. Later, researchers tried to infuse CNTs or CNFs into either carbon fiber preforms [1] or glass fiber preforms [2] for improving the mechanical properties. But the results were marginal and with great uncertainty due to the challenges of nanoparticle dispersion, filtering, and alignment while being infused through the fiber preform. Themore »glass fiber preform experiments ended with relatively more consistent improvement than the carbon fiber preform experiments since that the glass fiber preform has significantly larger pores than the carbon fiber preform' s. The small pore size presented a great challenge for infusing millions of unaligned long CNTs or CNFs through the carbon fiber preform without being filtered. To infuse long CNFs or CNTs through the carbon fiber preform and achieve reliable improvements, especially for 55% or higher carbon fiber volume fraction with increasingly tighter pores, an innovative plan for the processing and nano-reinforcing strategy is necessary. The z-threading strategy [3, 4, 5] has been reported to have consistent experimental successes in achieving the statistically meaningful improvement in multifunctional properties. The manufacturing steps of the CNF z-threaded CFRP (ZT-CFRP) are: (1) disperse the CNFs in a resin, (2) use a strong electrical field to align the CNFs in either the B-stage epoxy film or a CNF/resin impregnated sponge layer, whereas the CNFs are aligned in the through-thickness direction of the film or sponge layer. (3) place the resin film or sponge layer on a preheated dry carbon fiber fabric and press the resin film into the hot carbon fabric and allow the resin flow to carry the well-aligned CNFs to thread through the pores in the carbon fabric. (4) cool down the resin saturated and CNF z-threaded carbon fiber fabric to obtain the ZT-CFRP prepreg. (5) use the ZT-CFRP prepreg to make the ZT-CFRP laminate. Compared with the traditional CFRP, the ZT-CFRP laminates were reported of having improvement in the Mode-I delamination toughness, interlaminar shear strength, longitudinal compressive strength, through-thickness electrical conductivity, through-thickness thermal conductivity, and can reach the carbon fiber volume fraction of 55-80%. It is an effective approach to achieve a multifunctional CFRP for potentially expanding CFRP's applications.« less
  3. Thanks to its comparable specific mechanical properties to glass fibers, silk is a natural fiber that can be used as an eco-friendly alternative to synthetic reinforcing fibers in composite materials. Compared to natural fibers, especially plant fibers, silk enjoys higher mechanical performances, lower density, and higher elongation even at low temperatures, silk also exhibits other attractive qualities like flame resistance and being naturally continuous. However, silk is known to be prone to moisture absorption from surrounding humid environments. Moisture absorption may alter the silk/resin dynamics during composite manufacturing, and later lead to prem-ature degradation in the composite thermomechanical properties. This study investigates the effect of humidity on silk/resin wettability using two different resins (one epoxy and one vinyl ester) and three different silk architectures. Silk fibers are first exposed to different relative humidity environments. Subsequently, the affinity of the conditioned silk to a set of resins is assessed through measurements of silk/resin contact angle over time. Different silk/resin systems were observed to have contrasting responses to humidity exposure. While some silk/resin systems, such as Ahimsa/epoxy, did not show any change after humidity exposure. Other combinations showed tremendous susceptibility of silk/resin affinity to prior exposure of silk to humidity. For instance,more »although starting at virtually the same initial hydrophobic contact angle of ~123 degrees, Habotai silk/epoxy samples had contrasting wetting times. While the dried Habotai silk reached full wetting after around 5 minutes, the silk samples exposed to humidity took around 1 hour to reach full im-pregnation. These findings demonstrate the importance of humidity exposure control in silk reinforced composites. Keywords: Natural-Fiber Composites, Contact Angle, Silk, Wettability, Humidity.« less
  4. In the last few decades, fiber reinforced composites have been established as the materials of choice for lightweight applications in a large spectrum of applications ranging from aerospace, defense, and marine industries to automotive products and consumer goods. With the growing shift to sustainable resources, natural fibers, especially plant fibers, received increased interest throughout the years. Among these natural fibers, silks stand out with low stiffness and a high failure strain, unlike conventional fibers such as carbon or glass. Although gaining traction as a natural alternative reinforcement, silk still has little to no commercial uses despite its higher performance. Besides its higher mechanical properties and lightweight, silk exhibits other attractive properties such as improved flame retardancy and biodegradability. To take advantage of these features, proper fiber/matrix adhesion must be achieved. Such silk/matrix bonding can be inferred from the silk/resin affinity during composite manufacturing. In this study, the affinity/wettability of several silk/resin systems were analyzed via static contact angles using imageJ software to determine candidates for silk reinforced composite laminates with better adhesion. To this end, a combination of four silk fibers and three resin systems were investigated. The investigated silk fibers were Ahimsa, Charmeuse, Habotai, and Tussah; and the resinsmore »included a vinyl ester (Hydrex) and two epoxies (INF114 and INR). For Tussah fibers, initial contact angles were consistently one of the lowest. However, these fibers exhibited a higher contact angle over time compared to the other silk fibers studied. Conversely, Ahimsa silk fibers showed the highest initial contact angle, then quickly dropped to com-plete wetting. Habotai fibers dropped towards complete wetting quickly, however, consistently slowed considerably shortly after. Charmeuse fibers performed similarly to Ahimsa fibers with Hydrex, however was considerably slower to wetting with the other resins. Among the investigated resins, Hydrex showed the best affinity to silk fibers with the majority of the lowest initial contact angles and the fastest to complete wetting. INF114 consistently receded at a slower, albeit steady, rate until reaching complete wetting apart from Tussah. INR showed the highest initial contact angles and never reached complete wetting after an hour for two of the four silks investigated. Therefore, the best silk/resin affinity was observed for the Ahimsa and Charmeuse silk fibers and the Hydrex vinyl ester resin. In future work, silk composites with these constituents would be investigated.« less
  5. This paper utilizes a periodic unit cell modeling technique combined with finite element analysis (FEA) to predict and understand the mechanical behaviors of a nanotechnology-enhanced carbon fiber reinforced polymers (CFRPs) composite. This research specifically focuses on the study of novel Z-threaded CFRPs (ZT-CFRPs) that are reinforced not only by unidirectional carbon fibers but also with numerous carbon nanofibers (CNFs) threading through the CFRP laminate in the z-direction (i.e., through-thickness direction). The complex multi-scaled orthogonally-structured carbon reinforced polymer composite is modeled starting from a periodic unit cell, which is the smallest periodic building-block representation of the material. The ZT-CFRP unit cell includes three major components, i.e., carbon fibers, polymer matrix, and carbon nanofiber Z-threads. To compare the mechanical behavior of ZT-CFRPs against unmodified, control CFRPs, an additional unit cell without CNF reinforcement was also created and analyzed. The unit cells were then meshed into finite element models and subjected to different loading conditions to predict the interaction among all their components. The elastic moduli of both unit-cells in the z-direction were calculated from the FEA data. By assuming the CNFs have the same mechanical properties of T-300 carbon fiber, the numerical modeling showed that the ZT-CFRPs exhibited a 14% improvement inmore »z-directional elastic modulus due to the inclusion of 1 wt% CNF z-threads, indicating that ZT-CFRPs are stiffer compared to control CFRPs consisting of T-300 carbon fibers and epoxy.« less